Loading…

Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities

To cope with the increasing complexity of digital systems programming, deep learning techniques have recently been proposed to enhance software deployment by analysing source code for different purposes, ranging from performance and energy improvement to debugging and security assessment. As embedde...

Full description

Saved in:
Bibliographic Details
Published in:Journal of low power electronics and applications 2022-09, Vol.12 (3), p.37
Main Authors: Barchi, Francesco, Parisi, Emanuele, Bartolini, Andrea, Acquaviva, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c256t-e9241fad3be071d6940e921f19afd56b0ac8ccbe113119f40d92e4f789bd73f63
container_end_page
container_issue 3
container_start_page 37
container_title Journal of low power electronics and applications
container_volume 12
creator Barchi, Francesco
Parisi, Emanuele
Bartolini, Andrea
Acquaviva, Andrea
description To cope with the increasing complexity of digital systems programming, deep learning techniques have recently been proposed to enhance software deployment by analysing source code for different purposes, ranging from performance and energy improvement to debugging and security assessment. As embedded platforms for cyber-physical systems are characterised by increasing heterogeneity and parallelism, one of the most challenging and specific problems is efficiently allocating computational kernels to available hardware resources. In this field, deep learning applied to source code can be a key enabler to face this complexity. However, due to the rapid development of such techniques, it is not easy to understand which of those are suitable and most promising for this class of systems. For this purpose, we discuss recent developments in deep learning for source code analysis, and focus on techniques for kernel mapping on heterogeneous platforms, highlighting recent results, challenges and opportunities for their applications to cyber-physical systems.
doi_str_mv 10.3390/jlpea12030037
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c2f372d5dfc74d59bbca7dd5b84f82c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c2f372d5dfc74d59bbca7dd5b84f82c6</doaj_id><sourcerecordid>2716551973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-e9241fad3be071d6940e921f19afd56b0ac8ccbe113119f40d92e4f789bd73f63</originalsourceid><addsrcrecordid>eNpVkU9rGzEQxZfSQkOSY--CXrut_uyuVr0ZJ2kMBkPdnoVWGjkya2kjaQ_OJ-jHjhyH0MzlDY_Hb-BNVX0h-DtjAv_YjxMoQjHDmPEP1QXFXNSCdv3H__bP1XVKe1xGENY37KL6dwMwoTWo6J3focU0xaD0AySUA9qGOWpAy2AALbwaj8klZENEmym7g3tS2QWPgkX3kCGGHXgIc0LbY8pwSD_Rb9Dgc5E0jzl9Q8sHNY7gd4WuvCmUKcQ8e5cdpKvqk1VjgutXvaz-3t3-Wd7X682v1XKxrjVtu1yDoA2xyrABMCemEw0uFrFEKGvabsBK91oPQAgjRNgGG0GhsbwXg-HMduyyWp25Jqi9nKI7qHiUQTn5YoS4kypmp0eQmlrGqWmN1bwxrRgGrbgx7dA3tqf6xPp6ZpXSHmdIWe5LY6WoJCknXdsSwVlJ1eeUjiGlCPbtKsHy9Dv57nfsGY1jj6Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716551973</pqid></control><display><type>article</type><title>Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Barchi, Francesco ; Parisi, Emanuele ; Bartolini, Andrea ; Acquaviva, Andrea</creator><creatorcontrib>Barchi, Francesco ; Parisi, Emanuele ; Bartolini, Andrea ; Acquaviva, Andrea</creatorcontrib><description>To cope with the increasing complexity of digital systems programming, deep learning techniques have recently been proposed to enhance software deployment by analysing source code for different purposes, ranging from performance and energy improvement to debugging and security assessment. As embedded platforms for cyber-physical systems are characterised by increasing heterogeneity and parallelism, one of the most challenging and specific problems is efficiently allocating computational kernels to available hardware resources. In this field, deep learning applied to source code can be a key enabler to face this complexity. However, due to the rapid development of such techniques, it is not easy to understand which of those are suitable and most promising for this class of systems. For this purpose, we discuss recent developments in deep learning for source code analysis, and focus on techniques for kernel mapping on heterogeneous platforms, highlighting recent results, challenges and opportunities for their applications to cyber-physical systems.</description><identifier>ISSN: 2079-9268</identifier><identifier>EISSN: 2079-9268</identifier><identifier>DOI: 10.3390/jlpea12030037</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Complexity ; Cyber-physical systems ; Deep learning ; Digital systems ; Heterogeneity ; heterogeneous device mapping ; Kernels ; Keywords ; literature review ; Machine learning ; Optimization ; Platforms ; Software ; Source code ; source code analysis ; system optimisation</subject><ispartof>Journal of low power electronics and applications, 2022-09, Vol.12 (3), p.37</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-e9241fad3be071d6940e921f19afd56b0ac8ccbe113119f40d92e4f789bd73f63</cites><orcidid>0000-0001-6607-7367 ; 0000-0002-1148-2450 ; 0000-0002-7323-759X ; 0000-0001-5155-6883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716551973/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716551973?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Barchi, Francesco</creatorcontrib><creatorcontrib>Parisi, Emanuele</creatorcontrib><creatorcontrib>Bartolini, Andrea</creatorcontrib><creatorcontrib>Acquaviva, Andrea</creatorcontrib><title>Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities</title><title>Journal of low power electronics and applications</title><description>To cope with the increasing complexity of digital systems programming, deep learning techniques have recently been proposed to enhance software deployment by analysing source code for different purposes, ranging from performance and energy improvement to debugging and security assessment. As embedded platforms for cyber-physical systems are characterised by increasing heterogeneity and parallelism, one of the most challenging and specific problems is efficiently allocating computational kernels to available hardware resources. In this field, deep learning applied to source code can be a key enabler to face this complexity. However, due to the rapid development of such techniques, it is not easy to understand which of those are suitable and most promising for this class of systems. For this purpose, we discuss recent developments in deep learning for source code analysis, and focus on techniques for kernel mapping on heterogeneous platforms, highlighting recent results, challenges and opportunities for their applications to cyber-physical systems.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Cyber-physical systems</subject><subject>Deep learning</subject><subject>Digital systems</subject><subject>Heterogeneity</subject><subject>heterogeneous device mapping</subject><subject>Kernels</subject><subject>Keywords</subject><subject>literature review</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Platforms</subject><subject>Software</subject><subject>Source code</subject><subject>source code analysis</subject><subject>system optimisation</subject><issn>2079-9268</issn><issn>2079-9268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU9rGzEQxZfSQkOSY--CXrut_uyuVr0ZJ2kMBkPdnoVWGjkya2kjaQ_OJ-jHjhyH0MzlDY_Hb-BNVX0h-DtjAv_YjxMoQjHDmPEP1QXFXNSCdv3H__bP1XVKe1xGENY37KL6dwMwoTWo6J3focU0xaD0AySUA9qGOWpAy2AALbwaj8klZENEmym7g3tS2QWPgkX3kCGGHXgIc0LbY8pwSD_Rb9Dgc5E0jzl9Q8sHNY7gd4WuvCmUKcQ8e5cdpKvqk1VjgutXvaz-3t3-Wd7X682v1XKxrjVtu1yDoA2xyrABMCemEw0uFrFEKGvabsBK91oPQAgjRNgGG0GhsbwXg-HMduyyWp25Jqi9nKI7qHiUQTn5YoS4kypmp0eQmlrGqWmN1bwxrRgGrbgx7dA3tqf6xPp6ZpXSHmdIWe5LY6WoJCknXdsSwVlJ1eeUjiGlCPbtKsHy9Dv57nfsGY1jj6Y</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Barchi, Francesco</creator><creator>Parisi, Emanuele</creator><creator>Bartolini, Andrea</creator><creator>Acquaviva, Andrea</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6607-7367</orcidid><orcidid>https://orcid.org/0000-0002-1148-2450</orcidid><orcidid>https://orcid.org/0000-0002-7323-759X</orcidid><orcidid>https://orcid.org/0000-0001-5155-6883</orcidid></search><sort><creationdate>20220901</creationdate><title>Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities</title><author>Barchi, Francesco ; Parisi, Emanuele ; Bartolini, Andrea ; Acquaviva, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-e9241fad3be071d6940e921f19afd56b0ac8ccbe113119f40d92e4f789bd73f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Cyber-physical systems</topic><topic>Deep learning</topic><topic>Digital systems</topic><topic>Heterogeneity</topic><topic>heterogeneous device mapping</topic><topic>Kernels</topic><topic>Keywords</topic><topic>literature review</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Platforms</topic><topic>Software</topic><topic>Source code</topic><topic>source code analysis</topic><topic>system optimisation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barchi, Francesco</creatorcontrib><creatorcontrib>Parisi, Emanuele</creatorcontrib><creatorcontrib>Bartolini, Andrea</creatorcontrib><creatorcontrib>Acquaviva, Andrea</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of low power electronics and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barchi, Francesco</au><au>Parisi, Emanuele</au><au>Bartolini, Andrea</au><au>Acquaviva, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities</atitle><jtitle>Journal of low power electronics and applications</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>37</spage><pages>37-</pages><issn>2079-9268</issn><eissn>2079-9268</eissn><abstract>To cope with the increasing complexity of digital systems programming, deep learning techniques have recently been proposed to enhance software deployment by analysing source code for different purposes, ranging from performance and energy improvement to debugging and security assessment. As embedded platforms for cyber-physical systems are characterised by increasing heterogeneity and parallelism, one of the most challenging and specific problems is efficiently allocating computational kernels to available hardware resources. In this field, deep learning applied to source code can be a key enabler to face this complexity. However, due to the rapid development of such techniques, it is not easy to understand which of those are suitable and most promising for this class of systems. For this purpose, we discuss recent developments in deep learning for source code analysis, and focus on techniques for kernel mapping on heterogeneous platforms, highlighting recent results, challenges and opportunities for their applications to cyber-physical systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jlpea12030037</doi><orcidid>https://orcid.org/0000-0001-6607-7367</orcidid><orcidid>https://orcid.org/0000-0002-1148-2450</orcidid><orcidid>https://orcid.org/0000-0002-7323-759X</orcidid><orcidid>https://orcid.org/0000-0001-5155-6883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9268
ispartof Journal of low power electronics and applications, 2022-09, Vol.12 (3), p.37
issn 2079-9268
2079-9268
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c2f372d5dfc74d59bbca7dd5b84f82c6
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Complexity
Cyber-physical systems
Deep learning
Digital systems
Heterogeneity
heterogeneous device mapping
Kernels
Keywords
literature review
Machine learning
Optimization
Platforms
Software
Source code
source code analysis
system optimisation
title Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Approaches%20to%20Source%20Code%20Analysis%20for%20Optimization%20of%20Heterogeneous%20Systems:%20Recent%20Results,%20Challenges%20and%20Opportunities&rft.jtitle=Journal%20of%20low%20power%20electronics%20and%20applications&rft.au=Barchi,%20Francesco&rft.date=2022-09-01&rft.volume=12&rft.issue=3&rft.spage=37&rft.pages=37-&rft.issn=2079-9268&rft.eissn=2079-9268&rft_id=info:doi/10.3390/jlpea12030037&rft_dat=%3Cproquest_doaj_%3E2716551973%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-e9241fad3be071d6940e921f19afd56b0ac8ccbe113119f40d92e4f789bd73f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716551973&rft_id=info:pmid/&rfr_iscdi=true