Loading…
Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities
To cope with the increasing complexity of digital systems programming, deep learning techniques have recently been proposed to enhance software deployment by analysing source code for different purposes, ranging from performance and energy improvement to debugging and security assessment. As embedde...
Saved in:
Published in: | Journal of low power electronics and applications 2022-09, Vol.12 (3), p.37 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c256t-e9241fad3be071d6940e921f19afd56b0ac8ccbe113119f40d92e4f789bd73f63 |
container_end_page | |
container_issue | 3 |
container_start_page | 37 |
container_title | Journal of low power electronics and applications |
container_volume | 12 |
creator | Barchi, Francesco Parisi, Emanuele Bartolini, Andrea Acquaviva, Andrea |
description | To cope with the increasing complexity of digital systems programming, deep learning techniques have recently been proposed to enhance software deployment by analysing source code for different purposes, ranging from performance and energy improvement to debugging and security assessment. As embedded platforms for cyber-physical systems are characterised by increasing heterogeneity and parallelism, one of the most challenging and specific problems is efficiently allocating computational kernels to available hardware resources. In this field, deep learning applied to source code can be a key enabler to face this complexity. However, due to the rapid development of such techniques, it is not easy to understand which of those are suitable and most promising for this class of systems. For this purpose, we discuss recent developments in deep learning for source code analysis, and focus on techniques for kernel mapping on heterogeneous platforms, highlighting recent results, challenges and opportunities for their applications to cyber-physical systems. |
doi_str_mv | 10.3390/jlpea12030037 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c2f372d5dfc74d59bbca7dd5b84f82c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c2f372d5dfc74d59bbca7dd5b84f82c6</doaj_id><sourcerecordid>2716551973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-e9241fad3be071d6940e921f19afd56b0ac8ccbe113119f40d92e4f789bd73f63</originalsourceid><addsrcrecordid>eNpVkU9rGzEQxZfSQkOSY--CXrut_uyuVr0ZJ2kMBkPdnoVWGjkya2kjaQ_OJ-jHjhyH0MzlDY_Hb-BNVX0h-DtjAv_YjxMoQjHDmPEP1QXFXNSCdv3H__bP1XVKe1xGENY37KL6dwMwoTWo6J3focU0xaD0AySUA9qGOWpAy2AALbwaj8klZENEmym7g3tS2QWPgkX3kCGGHXgIc0LbY8pwSD_Rb9Dgc5E0jzl9Q8sHNY7gd4WuvCmUKcQ8e5cdpKvqk1VjgutXvaz-3t3-Wd7X682v1XKxrjVtu1yDoA2xyrABMCemEw0uFrFEKGvabsBK91oPQAgjRNgGG0GhsbwXg-HMduyyWp25Jqi9nKI7qHiUQTn5YoS4kypmp0eQmlrGqWmN1bwxrRgGrbgx7dA3tqf6xPp6ZpXSHmdIWe5LY6WoJCknXdsSwVlJ1eeUjiGlCPbtKsHy9Dv57nfsGY1jj6Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716551973</pqid></control><display><type>article</type><title>Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Barchi, Francesco ; Parisi, Emanuele ; Bartolini, Andrea ; Acquaviva, Andrea</creator><creatorcontrib>Barchi, Francesco ; Parisi, Emanuele ; Bartolini, Andrea ; Acquaviva, Andrea</creatorcontrib><description>To cope with the increasing complexity of digital systems programming, deep learning techniques have recently been proposed to enhance software deployment by analysing source code for different purposes, ranging from performance and energy improvement to debugging and security assessment. As embedded platforms for cyber-physical systems are characterised by increasing heterogeneity and parallelism, one of the most challenging and specific problems is efficiently allocating computational kernels to available hardware resources. In this field, deep learning applied to source code can be a key enabler to face this complexity. However, due to the rapid development of such techniques, it is not easy to understand which of those are suitable and most promising for this class of systems. For this purpose, we discuss recent developments in deep learning for source code analysis, and focus on techniques for kernel mapping on heterogeneous platforms, highlighting recent results, challenges and opportunities for their applications to cyber-physical systems.</description><identifier>ISSN: 2079-9268</identifier><identifier>EISSN: 2079-9268</identifier><identifier>DOI: 10.3390/jlpea12030037</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Complexity ; Cyber-physical systems ; Deep learning ; Digital systems ; Heterogeneity ; heterogeneous device mapping ; Kernels ; Keywords ; literature review ; Machine learning ; Optimization ; Platforms ; Software ; Source code ; source code analysis ; system optimisation</subject><ispartof>Journal of low power electronics and applications, 2022-09, Vol.12 (3), p.37</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-e9241fad3be071d6940e921f19afd56b0ac8ccbe113119f40d92e4f789bd73f63</cites><orcidid>0000-0001-6607-7367 ; 0000-0002-1148-2450 ; 0000-0002-7323-759X ; 0000-0001-5155-6883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716551973/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716551973?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Barchi, Francesco</creatorcontrib><creatorcontrib>Parisi, Emanuele</creatorcontrib><creatorcontrib>Bartolini, Andrea</creatorcontrib><creatorcontrib>Acquaviva, Andrea</creatorcontrib><title>Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities</title><title>Journal of low power electronics and applications</title><description>To cope with the increasing complexity of digital systems programming, deep learning techniques have recently been proposed to enhance software deployment by analysing source code for different purposes, ranging from performance and energy improvement to debugging and security assessment. As embedded platforms for cyber-physical systems are characterised by increasing heterogeneity and parallelism, one of the most challenging and specific problems is efficiently allocating computational kernels to available hardware resources. In this field, deep learning applied to source code can be a key enabler to face this complexity. However, due to the rapid development of such techniques, it is not easy to understand which of those are suitable and most promising for this class of systems. For this purpose, we discuss recent developments in deep learning for source code analysis, and focus on techniques for kernel mapping on heterogeneous platforms, highlighting recent results, challenges and opportunities for their applications to cyber-physical systems.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Cyber-physical systems</subject><subject>Deep learning</subject><subject>Digital systems</subject><subject>Heterogeneity</subject><subject>heterogeneous device mapping</subject><subject>Kernels</subject><subject>Keywords</subject><subject>literature review</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Platforms</subject><subject>Software</subject><subject>Source code</subject><subject>source code analysis</subject><subject>system optimisation</subject><issn>2079-9268</issn><issn>2079-9268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU9rGzEQxZfSQkOSY--CXrut_uyuVr0ZJ2kMBkPdnoVWGjkya2kjaQ_OJ-jHjhyH0MzlDY_Hb-BNVX0h-DtjAv_YjxMoQjHDmPEP1QXFXNSCdv3H__bP1XVKe1xGENY37KL6dwMwoTWo6J3focU0xaD0AySUA9qGOWpAy2AALbwaj8klZENEmym7g3tS2QWPgkX3kCGGHXgIc0LbY8pwSD_Rb9Dgc5E0jzl9Q8sHNY7gd4WuvCmUKcQ8e5cdpKvqk1VjgutXvaz-3t3-Wd7X682v1XKxrjVtu1yDoA2xyrABMCemEw0uFrFEKGvabsBK91oPQAgjRNgGG0GhsbwXg-HMduyyWp25Jqi9nKI7qHiUQTn5YoS4kypmp0eQmlrGqWmN1bwxrRgGrbgx7dA3tqf6xPp6ZpXSHmdIWe5LY6WoJCknXdsSwVlJ1eeUjiGlCPbtKsHy9Dv57nfsGY1jj6Y</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Barchi, Francesco</creator><creator>Parisi, Emanuele</creator><creator>Bartolini, Andrea</creator><creator>Acquaviva, Andrea</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6607-7367</orcidid><orcidid>https://orcid.org/0000-0002-1148-2450</orcidid><orcidid>https://orcid.org/0000-0002-7323-759X</orcidid><orcidid>https://orcid.org/0000-0001-5155-6883</orcidid></search><sort><creationdate>20220901</creationdate><title>Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities</title><author>Barchi, Francesco ; Parisi, Emanuele ; Bartolini, Andrea ; Acquaviva, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-e9241fad3be071d6940e921f19afd56b0ac8ccbe113119f40d92e4f789bd73f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Cyber-physical systems</topic><topic>Deep learning</topic><topic>Digital systems</topic><topic>Heterogeneity</topic><topic>heterogeneous device mapping</topic><topic>Kernels</topic><topic>Keywords</topic><topic>literature review</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Platforms</topic><topic>Software</topic><topic>Source code</topic><topic>source code analysis</topic><topic>system optimisation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barchi, Francesco</creatorcontrib><creatorcontrib>Parisi, Emanuele</creatorcontrib><creatorcontrib>Bartolini, Andrea</creatorcontrib><creatorcontrib>Acquaviva, Andrea</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of low power electronics and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barchi, Francesco</au><au>Parisi, Emanuele</au><au>Bartolini, Andrea</au><au>Acquaviva, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities</atitle><jtitle>Journal of low power electronics and applications</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>37</spage><pages>37-</pages><issn>2079-9268</issn><eissn>2079-9268</eissn><abstract>To cope with the increasing complexity of digital systems programming, deep learning techniques have recently been proposed to enhance software deployment by analysing source code for different purposes, ranging from performance and energy improvement to debugging and security assessment. As embedded platforms for cyber-physical systems are characterised by increasing heterogeneity and parallelism, one of the most challenging and specific problems is efficiently allocating computational kernels to available hardware resources. In this field, deep learning applied to source code can be a key enabler to face this complexity. However, due to the rapid development of such techniques, it is not easy to understand which of those are suitable and most promising for this class of systems. For this purpose, we discuss recent developments in deep learning for source code analysis, and focus on techniques for kernel mapping on heterogeneous platforms, highlighting recent results, challenges and opportunities for their applications to cyber-physical systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jlpea12030037</doi><orcidid>https://orcid.org/0000-0001-6607-7367</orcidid><orcidid>https://orcid.org/0000-0002-1148-2450</orcidid><orcidid>https://orcid.org/0000-0002-7323-759X</orcidid><orcidid>https://orcid.org/0000-0001-5155-6883</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9268 |
ispartof | Journal of low power electronics and applications, 2022-09, Vol.12 (3), p.37 |
issn | 2079-9268 2079-9268 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c2f372d5dfc74d59bbca7dd5b84f82c6 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Complexity Cyber-physical systems Deep learning Digital systems Heterogeneity heterogeneous device mapping Kernels Keywords literature review Machine learning Optimization Platforms Software Source code source code analysis system optimisation |
title | Deep Learning Approaches to Source Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges and Opportunities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Approaches%20to%20Source%20Code%20Analysis%20for%20Optimization%20of%20Heterogeneous%20Systems:%20Recent%20Results,%20Challenges%20and%20Opportunities&rft.jtitle=Journal%20of%20low%20power%20electronics%20and%20applications&rft.au=Barchi,%20Francesco&rft.date=2022-09-01&rft.volume=12&rft.issue=3&rft.spage=37&rft.pages=37-&rft.issn=2079-9268&rft.eissn=2079-9268&rft_id=info:doi/10.3390/jlpea12030037&rft_dat=%3Cproquest_doaj_%3E2716551973%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-e9241fad3be071d6940e921f19afd56b0ac8ccbe113119f40d92e4f789bd73f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716551973&rft_id=info:pmid/&rfr_iscdi=true |