Loading…

Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2, 5-dimethylfuran over mesoporous silica supported copper catalysts

[Display omitted] Selective catalytic hydrodeoxygenation (HDO) of 5-hydroxymethylfurfural (HMF) to prepare 2, 5-dimethylfuran (DMF) was studied as this product is a good biofuel. A sequence of copper dispersed on SBA-15 catalysts are designed and tested their activity for HMF hydrodeoxygenation reac...

Full description

Saved in:
Bibliographic Details
Published in:Materials science for energy technologies 2021, Vol.4, p.357-366
Main Authors: Dhana Lakshmi, D., Srinivasa Rao, B., Yogita, Lingaiah, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Selective catalytic hydrodeoxygenation (HDO) of 5-hydroxymethylfurfural (HMF) to prepare 2, 5-dimethylfuran (DMF) was studied as this product is a good biofuel. A sequence of copper dispersed on SBA-15 catalysts are designed and tested their activity for HMF hydrodeoxygenation reaction. The physico-chemical characteristics of the catalysts are gained from powder XRD, TEM, N2-adsorption desorption, NH3-TPD, H2-TPR and N2O-chemisorptions studies. Characterization results indicate the fine dispersion of Cu metal on SBA-15 with high surface area and appropriate acidic sites. The catalyst with 15%Cu on SBA-15 showed high activity towards DMF with 90% yield. The optimized reaction conditions were 180 °C of reaction temperature, 20 bar H2 pressure, and a reaction time of 8 h to achieve maximum yield. The catalyst is recyclable and exhibits consistent activity.
ISSN:2589-2991
2589-2991
DOI:10.1016/j.mset.2021.08.012