Loading…
Leveraging Random Effects in Cistrome-Wide Association Studies for Decoding the Genetic Determinants of Prostate Cancer
Cistrome-wide association studies (CWAS) are pivotal for identifying genetic determinants of diseases by correlating genetically regulated cistrome states with phenotypes. Traditional CWAS typically develops a model based on cistrome and genotype data to associate predicted cistrome states with phen...
Saved in:
Published in: | Advanced science 2024-09, Vol.11 (36), p.e2400815-n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cistrome-wide association studies (CWAS) are pivotal for identifying genetic determinants of diseases by correlating genetically regulated cistrome states with phenotypes. Traditional CWAS typically develops a model based on cistrome and genotype data to associate predicted cistrome states with phenotypes. The random effect cistrome-wide association study (RECWAS), reevaluates the necessity of cistrome state prediction in CWAS. RECWAS utilizes either a linear model or marginal effect for initial feature selection, followed by kernel-based feature aggregation for association testing is introduced. Through simulations and analysis of prostate cancer data, a thorough evaluation of CWAS and RECWAS is conducted. The results suggest that RECWAS offers improved power compared to traditional CWAS, identifying additional genomic regions associated with prostate cancer. CWAS identified 102 significant regions, while RECWAS found 50 additional significant regions compared to CWAS, many of which are validated. Validation encompassed a range of biological evidence, including risk signals from the GWAS catalog, susceptibility genes from the DisGeNET database, and enhancer-domain scores. RECWAS consistently demonstrated improved performance over traditional CWAS in identifying genomic regions associated with prostate cancer. These findings demonstrate the benefits of incorporating kernel methods into CWAS and provide new insights for genetic discovery in complex diseases. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202400815 |