Loading…
Remarkable SERS Detection by Hybrid Cu2O/Ag Nanospheres
Cu2O nanospheres (NSs) were synthesized by modifying the glucose reduction method. Based on this method, Cu2O/Au (Ag) NSs were further prepared by in situ reduction of HAuCl4 (via electron beam evaporation of Ag). With Rhodamine 6G (R6G) as probe, the surface-enhanced Raman scattering (SERS) charact...
Saved in:
Published in: | ACS omega 2020-07, Vol.5 (28), p.17703-17714 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cu2O nanospheres (NSs) were synthesized by modifying the glucose reduction method. Based on this method, Cu2O/Au (Ag) NSs were further prepared by in situ reduction of HAuCl4 (via electron beam evaporation of Ag). With Rhodamine 6G (R6G) as probe, the surface-enhanced Raman scattering (SERS) characteristics of the three samples were systematically studied. The experiment results showed that the enhancement factor (EF) of Cu2O/Au (Ag) NSs as 1.25 × 108 (2.74 × 109) and the ultralow detection limit (LOD) as 8.07 × 10–12 (1.13 × 10–13) M for R6G. The excellent performance of SERS may be due to the charge transfer (CT) between metal–semiconductor (MS) molecules and the strong electromagnetic field (E-field) of each hot spot. In addition, discrete dipole approximation (DDA) simulations were performed to simulate the E-field enhancement of the Cu2O and Cu2O/Au (Ag) NSs in a three-dimensional (3D) configuration. These further supported that the high SERS performance for R6G is because of the powerful E-field coupling between neighboring Au (Ag) NPs and the surface plasmon resonance (SPR) effect. The Cu2O/Ag NSs have potential in applications such as biomedicine, food safety, and environmental monitoring because of their high sensitivity and good reproducibility. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.0c02301 |