Loading…

A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography

Models based on a potential field description and corresponding first integral formulation, embodying a reduction of the associated dynamic boundary condition at a free surface to one of a standard Dirichlet-Neumann type, are used to explore the problem of continuous gravity-driven film flow down an...

Full description

Saved in:
Bibliographic Details
Published in:Fluids (Basel) 2019-06, Vol.4 (2), p.82
Main Authors: Scholle, Markus, Gaskell, Philip H., Marner, Florian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3
cites cdi_FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3
container_end_page
container_issue 2
container_start_page 82
container_title Fluids (Basel)
container_volume 4
creator Scholle, Markus
Gaskell, Philip H.
Marner, Florian
description Models based on a potential field description and corresponding first integral formulation, embodying a reduction of the associated dynamic boundary condition at a free surface to one of a standard Dirichlet-Neumann type, are used to explore the problem of continuous gravity-driven film flow down an inclined piece-wise planar substrate in the absence of inertia. Numerical solutions of the first integral equations are compared with analytical ones from a linearised form of a reduced equation set resulting from application of the long-wave approximation. The results obtained are shown to: (i) be in very close agreement with existing, comparable experimental data and complementary numerical predictions for isolated step-like topography available in the open literature; (ii) exhibit the same qualitative behaviour for a range of Capillary numbers and step heights/depths, becoming quantitively similar when both are small. A novel outcome of the formulation adopted is identification of an analytic criteria enabling a simple classification procedure for specifying the characteristic nature of the free surface disturbance formed; leading subsequently to the generation of a related, practically relevant, characteristic parameter map in terms of the substrate inclination angle and the Capillary number of the associated flow.
doi_str_mv 10.3390/fluids4020082
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c3a7e98da7d34c19a0e3b8edef6719f2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c3a7e98da7d34c19a0e3b8edef6719f2</doaj_id><sourcerecordid>2548450916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3</originalsourceid><addsrcrecordid>eNpVkUFLAzEQRhdRULRH7wHPq5Nkt8keS7VaKNhDxYsQssmkpqybNdlW-u9drYieZhge7xv4suySwjXnFdy4ZuttKoABSHaUnTFOaV6WjB7_2U-zUUobAKCy5FSIs-xlQpahx7b3uiEzj40lt5hM9F3vQ0tciOQ-6p3v9_lt9DtsB6h5I7MmfJCww0iWHg3mzz4hWTa61ZGsQhfWUXev-4vsxOkm4ehnnmdPs7vV9CFfPN7Pp5NFbriAPh8LBlo6DYCsZtJqihokBSawGlcGJBphwaBxKIQsCitFxepaQm2drajl59n84LVBb1QX_ZuOexW0V9-HENdKx96bBpXherAOGcLywtBKA_JaokU3FrRybHBdHVxdDO9bTL3ahG1sh_cVKwtZlFDR8UDlB8rEkFJE95tKQX31of71wT8BMCB-yQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548450916</pqid></control><display><type>article</type><title>A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Scholle, Markus ; Gaskell, Philip H. ; Marner, Florian</creator><creatorcontrib>Scholle, Markus ; Gaskell, Philip H. ; Marner, Florian</creatorcontrib><description>Models based on a potential field description and corresponding first integral formulation, embodying a reduction of the associated dynamic boundary condition at a free surface to one of a standard Dirichlet-Neumann type, are used to explore the problem of continuous gravity-driven film flow down an inclined piece-wise planar substrate in the absence of inertia. Numerical solutions of the first integral equations are compared with analytical ones from a linearised form of a reduced equation set resulting from application of the long-wave approximation. The results obtained are shown to: (i) be in very close agreement with existing, comparable experimental data and complementary numerical predictions for isolated step-like topography available in the open literature; (ii) exhibit the same qualitative behaviour for a range of Capillary numbers and step heights/depths, becoming quantitively similar when both are small. A novel outcome of the formulation adopted is identification of an analytic criteria enabling a simple classification procedure for specifying the characteristic nature of the free surface disturbance formed; leading subsequently to the generation of a related, practically relevant, characteristic parameter map in terms of the substrate inclination angle and the Capillary number of the associated flow.</description><identifier>ISSN: 2311-5521</identifier><identifier>EISSN: 2311-5521</identifier><identifier>DOI: 10.3390/fluids4020082</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>analytic solutions ; Approximation ; Boundary conditions ; Dirichlet problem ; FE solutions ; film flows ; first integrals ; Free surfaces ; Inclination angle ; Integral equations ; Kinematics ; lubrication theory ; Numerical prediction ; Potential fields ; Reynolds number ; Substrates ; Topography ; Velocity</subject><ispartof>Fluids (Basel), 2019-06, Vol.4 (2), p.82</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3</citedby><cites>FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3</cites><orcidid>0000-0001-6945-5247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548450916/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548450916?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Scholle, Markus</creatorcontrib><creatorcontrib>Gaskell, Philip H.</creatorcontrib><creatorcontrib>Marner, Florian</creatorcontrib><title>A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography</title><title>Fluids (Basel)</title><description>Models based on a potential field description and corresponding first integral formulation, embodying a reduction of the associated dynamic boundary condition at a free surface to one of a standard Dirichlet-Neumann type, are used to explore the problem of continuous gravity-driven film flow down an inclined piece-wise planar substrate in the absence of inertia. Numerical solutions of the first integral equations are compared with analytical ones from a linearised form of a reduced equation set resulting from application of the long-wave approximation. The results obtained are shown to: (i) be in very close agreement with existing, comparable experimental data and complementary numerical predictions for isolated step-like topography available in the open literature; (ii) exhibit the same qualitative behaviour for a range of Capillary numbers and step heights/depths, becoming quantitively similar when both are small. A novel outcome of the formulation adopted is identification of an analytic criteria enabling a simple classification procedure for specifying the characteristic nature of the free surface disturbance formed; leading subsequently to the generation of a related, practically relevant, characteristic parameter map in terms of the substrate inclination angle and the Capillary number of the associated flow.</description><subject>analytic solutions</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Dirichlet problem</subject><subject>FE solutions</subject><subject>film flows</subject><subject>first integrals</subject><subject>Free surfaces</subject><subject>Inclination angle</subject><subject>Integral equations</subject><subject>Kinematics</subject><subject>lubrication theory</subject><subject>Numerical prediction</subject><subject>Potential fields</subject><subject>Reynolds number</subject><subject>Substrates</subject><subject>Topography</subject><subject>Velocity</subject><issn>2311-5521</issn><issn>2311-5521</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkUFLAzEQRhdRULRH7wHPq5Nkt8keS7VaKNhDxYsQssmkpqybNdlW-u9drYieZhge7xv4suySwjXnFdy4ZuttKoABSHaUnTFOaV6WjB7_2U-zUUobAKCy5FSIs-xlQpahx7b3uiEzj40lt5hM9F3vQ0tciOQ-6p3v9_lt9DtsB6h5I7MmfJCww0iWHg3mzz4hWTa61ZGsQhfWUXev-4vsxOkm4ehnnmdPs7vV9CFfPN7Pp5NFbriAPh8LBlo6DYCsZtJqihokBSawGlcGJBphwaBxKIQsCitFxepaQm2drajl59n84LVBb1QX_ZuOexW0V9-HENdKx96bBpXherAOGcLywtBKA_JaokU3FrRybHBdHVxdDO9bTL3ahG1sh_cVKwtZlFDR8UDlB8rEkFJE95tKQX31of71wT8BMCB-yQ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Scholle, Markus</creator><creator>Gaskell, Philip H.</creator><creator>Marner, Florian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6945-5247</orcidid></search><sort><creationdate>20190601</creationdate><title>A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography</title><author>Scholle, Markus ; Gaskell, Philip H. ; Marner, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>analytic solutions</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Dirichlet problem</topic><topic>FE solutions</topic><topic>film flows</topic><topic>first integrals</topic><topic>Free surfaces</topic><topic>Inclination angle</topic><topic>Integral equations</topic><topic>Kinematics</topic><topic>lubrication theory</topic><topic>Numerical prediction</topic><topic>Potential fields</topic><topic>Reynolds number</topic><topic>Substrates</topic><topic>Topography</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholle, Markus</creatorcontrib><creatorcontrib>Gaskell, Philip H.</creatorcontrib><creatorcontrib>Marner, Florian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Fluids (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholle, Markus</au><au>Gaskell, Philip H.</au><au>Marner, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography</atitle><jtitle>Fluids (Basel)</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>4</volume><issue>2</issue><spage>82</spage><pages>82-</pages><issn>2311-5521</issn><eissn>2311-5521</eissn><abstract>Models based on a potential field description and corresponding first integral formulation, embodying a reduction of the associated dynamic boundary condition at a free surface to one of a standard Dirichlet-Neumann type, are used to explore the problem of continuous gravity-driven film flow down an inclined piece-wise planar substrate in the absence of inertia. Numerical solutions of the first integral equations are compared with analytical ones from a linearised form of a reduced equation set resulting from application of the long-wave approximation. The results obtained are shown to: (i) be in very close agreement with existing, comparable experimental data and complementary numerical predictions for isolated step-like topography available in the open literature; (ii) exhibit the same qualitative behaviour for a range of Capillary numbers and step heights/depths, becoming quantitively similar when both are small. A novel outcome of the formulation adopted is identification of an analytic criteria enabling a simple classification procedure for specifying the characteristic nature of the free surface disturbance formed; leading subsequently to the generation of a related, practically relevant, characteristic parameter map in terms of the substrate inclination angle and the Capillary number of the associated flow.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fluids4020082</doi><orcidid>https://orcid.org/0000-0001-6945-5247</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2311-5521
ispartof Fluids (Basel), 2019-06, Vol.4 (2), p.82
issn 2311-5521
2311-5521
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c3a7e98da7d34c19a0e3b8edef6719f2
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects analytic solutions
Approximation
Boundary conditions
Dirichlet problem
FE solutions
film flows
first integrals
Free surfaces
Inclination angle
Integral equations
Kinematics
lubrication theory
Numerical prediction
Potential fields
Reynolds number
Substrates
Topography
Velocity
title A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Potential%20Field%20Description%20for%20Gravity-Driven%20Film%20Flow%20over%20Piece-Wise%20Planar%20Topography&rft.jtitle=Fluids%20(Basel)&rft.au=Scholle,%20Markus&rft.date=2019-06-01&rft.volume=4&rft.issue=2&rft.spage=82&rft.pages=82-&rft.issn=2311-5521&rft.eissn=2311-5521&rft_id=info:doi/10.3390/fluids4020082&rft_dat=%3Cproquest_doaj_%3E2548450916%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548450916&rft_id=info:pmid/&rfr_iscdi=true