Loading…
A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography
Models based on a potential field description and corresponding first integral formulation, embodying a reduction of the associated dynamic boundary condition at a free surface to one of a standard Dirichlet-Neumann type, are used to explore the problem of continuous gravity-driven film flow down an...
Saved in:
Published in: | Fluids (Basel) 2019-06, Vol.4 (2), p.82 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3 |
container_end_page | |
container_issue | 2 |
container_start_page | 82 |
container_title | Fluids (Basel) |
container_volume | 4 |
creator | Scholle, Markus Gaskell, Philip H. Marner, Florian |
description | Models based on a potential field description and corresponding first integral formulation, embodying a reduction of the associated dynamic boundary condition at a free surface to one of a standard Dirichlet-Neumann type, are used to explore the problem of continuous gravity-driven film flow down an inclined piece-wise planar substrate in the absence of inertia. Numerical solutions of the first integral equations are compared with analytical ones from a linearised form of a reduced equation set resulting from application of the long-wave approximation. The results obtained are shown to: (i) be in very close agreement with existing, comparable experimental data and complementary numerical predictions for isolated step-like topography available in the open literature; (ii) exhibit the same qualitative behaviour for a range of Capillary numbers and step heights/depths, becoming quantitively similar when both are small. A novel outcome of the formulation adopted is identification of an analytic criteria enabling a simple classification procedure for specifying the characteristic nature of the free surface disturbance formed; leading subsequently to the generation of a related, practically relevant, characteristic parameter map in terms of the substrate inclination angle and the Capillary number of the associated flow. |
doi_str_mv | 10.3390/fluids4020082 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c3a7e98da7d34c19a0e3b8edef6719f2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c3a7e98da7d34c19a0e3b8edef6719f2</doaj_id><sourcerecordid>2548450916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3</originalsourceid><addsrcrecordid>eNpVkUFLAzEQRhdRULRH7wHPq5Nkt8keS7VaKNhDxYsQssmkpqybNdlW-u9drYieZhge7xv4suySwjXnFdy4ZuttKoABSHaUnTFOaV6WjB7_2U-zUUobAKCy5FSIs-xlQpahx7b3uiEzj40lt5hM9F3vQ0tciOQ-6p3v9_lt9DtsB6h5I7MmfJCww0iWHg3mzz4hWTa61ZGsQhfWUXev-4vsxOkm4ehnnmdPs7vV9CFfPN7Pp5NFbriAPh8LBlo6DYCsZtJqihokBSawGlcGJBphwaBxKIQsCitFxepaQm2drajl59n84LVBb1QX_ZuOexW0V9-HENdKx96bBpXherAOGcLywtBKA_JaokU3FrRybHBdHVxdDO9bTL3ahG1sh_cVKwtZlFDR8UDlB8rEkFJE95tKQX31of71wT8BMCB-yQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548450916</pqid></control><display><type>article</type><title>A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Scholle, Markus ; Gaskell, Philip H. ; Marner, Florian</creator><creatorcontrib>Scholle, Markus ; Gaskell, Philip H. ; Marner, Florian</creatorcontrib><description>Models based on a potential field description and corresponding first integral formulation, embodying a reduction of the associated dynamic boundary condition at a free surface to one of a standard Dirichlet-Neumann type, are used to explore the problem of continuous gravity-driven film flow down an inclined piece-wise planar substrate in the absence of inertia. Numerical solutions of the first integral equations are compared with analytical ones from a linearised form of a reduced equation set resulting from application of the long-wave approximation. The results obtained are shown to: (i) be in very close agreement with existing, comparable experimental data and complementary numerical predictions for isolated step-like topography available in the open literature; (ii) exhibit the same qualitative behaviour for a range of Capillary numbers and step heights/depths, becoming quantitively similar when both are small. A novel outcome of the formulation adopted is identification of an analytic criteria enabling a simple classification procedure for specifying the characteristic nature of the free surface disturbance formed; leading subsequently to the generation of a related, practically relevant, characteristic parameter map in terms of the substrate inclination angle and the Capillary number of the associated flow.</description><identifier>ISSN: 2311-5521</identifier><identifier>EISSN: 2311-5521</identifier><identifier>DOI: 10.3390/fluids4020082</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>analytic solutions ; Approximation ; Boundary conditions ; Dirichlet problem ; FE solutions ; film flows ; first integrals ; Free surfaces ; Inclination angle ; Integral equations ; Kinematics ; lubrication theory ; Numerical prediction ; Potential fields ; Reynolds number ; Substrates ; Topography ; Velocity</subject><ispartof>Fluids (Basel), 2019-06, Vol.4 (2), p.82</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3</citedby><cites>FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3</cites><orcidid>0000-0001-6945-5247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548450916/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548450916?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Scholle, Markus</creatorcontrib><creatorcontrib>Gaskell, Philip H.</creatorcontrib><creatorcontrib>Marner, Florian</creatorcontrib><title>A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography</title><title>Fluids (Basel)</title><description>Models based on a potential field description and corresponding first integral formulation, embodying a reduction of the associated dynamic boundary condition at a free surface to one of a standard Dirichlet-Neumann type, are used to explore the problem of continuous gravity-driven film flow down an inclined piece-wise planar substrate in the absence of inertia. Numerical solutions of the first integral equations are compared with analytical ones from a linearised form of a reduced equation set resulting from application of the long-wave approximation. The results obtained are shown to: (i) be in very close agreement with existing, comparable experimental data and complementary numerical predictions for isolated step-like topography available in the open literature; (ii) exhibit the same qualitative behaviour for a range of Capillary numbers and step heights/depths, becoming quantitively similar when both are small. A novel outcome of the formulation adopted is identification of an analytic criteria enabling a simple classification procedure for specifying the characteristic nature of the free surface disturbance formed; leading subsequently to the generation of a related, practically relevant, characteristic parameter map in terms of the substrate inclination angle and the Capillary number of the associated flow.</description><subject>analytic solutions</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Dirichlet problem</subject><subject>FE solutions</subject><subject>film flows</subject><subject>first integrals</subject><subject>Free surfaces</subject><subject>Inclination angle</subject><subject>Integral equations</subject><subject>Kinematics</subject><subject>lubrication theory</subject><subject>Numerical prediction</subject><subject>Potential fields</subject><subject>Reynolds number</subject><subject>Substrates</subject><subject>Topography</subject><subject>Velocity</subject><issn>2311-5521</issn><issn>2311-5521</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkUFLAzEQRhdRULRH7wHPq5Nkt8keS7VaKNhDxYsQssmkpqybNdlW-u9drYieZhge7xv4suySwjXnFdy4ZuttKoABSHaUnTFOaV6WjB7_2U-zUUobAKCy5FSIs-xlQpahx7b3uiEzj40lt5hM9F3vQ0tciOQ-6p3v9_lt9DtsB6h5I7MmfJCww0iWHg3mzz4hWTa61ZGsQhfWUXev-4vsxOkm4ehnnmdPs7vV9CFfPN7Pp5NFbriAPh8LBlo6DYCsZtJqihokBSawGlcGJBphwaBxKIQsCitFxepaQm2drajl59n84LVBb1QX_ZuOexW0V9-HENdKx96bBpXherAOGcLywtBKA_JaokU3FrRybHBdHVxdDO9bTL3ahG1sh_cVKwtZlFDR8UDlB8rEkFJE95tKQX31of71wT8BMCB-yQ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Scholle, Markus</creator><creator>Gaskell, Philip H.</creator><creator>Marner, Florian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6945-5247</orcidid></search><sort><creationdate>20190601</creationdate><title>A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography</title><author>Scholle, Markus ; Gaskell, Philip H. ; Marner, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>analytic solutions</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Dirichlet problem</topic><topic>FE solutions</topic><topic>film flows</topic><topic>first integrals</topic><topic>Free surfaces</topic><topic>Inclination angle</topic><topic>Integral equations</topic><topic>Kinematics</topic><topic>lubrication theory</topic><topic>Numerical prediction</topic><topic>Potential fields</topic><topic>Reynolds number</topic><topic>Substrates</topic><topic>Topography</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholle, Markus</creatorcontrib><creatorcontrib>Gaskell, Philip H.</creatorcontrib><creatorcontrib>Marner, Florian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Fluids (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholle, Markus</au><au>Gaskell, Philip H.</au><au>Marner, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography</atitle><jtitle>Fluids (Basel)</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>4</volume><issue>2</issue><spage>82</spage><pages>82-</pages><issn>2311-5521</issn><eissn>2311-5521</eissn><abstract>Models based on a potential field description and corresponding first integral formulation, embodying a reduction of the associated dynamic boundary condition at a free surface to one of a standard Dirichlet-Neumann type, are used to explore the problem of continuous gravity-driven film flow down an inclined piece-wise planar substrate in the absence of inertia. Numerical solutions of the first integral equations are compared with analytical ones from a linearised form of a reduced equation set resulting from application of the long-wave approximation. The results obtained are shown to: (i) be in very close agreement with existing, comparable experimental data and complementary numerical predictions for isolated step-like topography available in the open literature; (ii) exhibit the same qualitative behaviour for a range of Capillary numbers and step heights/depths, becoming quantitively similar when both are small. A novel outcome of the formulation adopted is identification of an analytic criteria enabling a simple classification procedure for specifying the characteristic nature of the free surface disturbance formed; leading subsequently to the generation of a related, practically relevant, characteristic parameter map in terms of the substrate inclination angle and the Capillary number of the associated flow.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fluids4020082</doi><orcidid>https://orcid.org/0000-0001-6945-5247</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-5521 |
ispartof | Fluids (Basel), 2019-06, Vol.4 (2), p.82 |
issn | 2311-5521 2311-5521 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c3a7e98da7d34c19a0e3b8edef6719f2 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | analytic solutions Approximation Boundary conditions Dirichlet problem FE solutions film flows first integrals Free surfaces Inclination angle Integral equations Kinematics lubrication theory Numerical prediction Potential fields Reynolds number Substrates Topography Velocity |
title | A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Potential%20Field%20Description%20for%20Gravity-Driven%20Film%20Flow%20over%20Piece-Wise%20Planar%20Topography&rft.jtitle=Fluids%20(Basel)&rft.au=Scholle,%20Markus&rft.date=2019-06-01&rft.volume=4&rft.issue=2&rft.spage=82&rft.pages=82-&rft.issn=2311-5521&rft.eissn=2311-5521&rft_id=info:doi/10.3390/fluids4020082&rft_dat=%3Cproquest_doaj_%3E2548450916%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-6720a8fa00e2b28da1ea081027e969c08ec7d0cecfe77844d8792bb80bdfd91d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548450916&rft_id=info:pmid/&rfr_iscdi=true |