Loading…

Scattering Intensity Analysis and Classification of Two Types of Rice Based on Multi-Temporal and Multi-Mode Simulated Compact Polarimetric SAR Data

Because transmitting polarization can be an arbitrary elliptical wave, and theoretically, there are numerous possibilities of hybrid dual-pol modes, therefore, it is necessary to explore the feature recognition and classification ability of compact polarimetric (CP) parameters under different transm...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-04, Vol.14 (7), p.1644
Main Authors: Guo, Xianyu, Yin, Junjun, Li, Kun, Yang, Jian, Shao, Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-1a7b8e7f9774657d90d70cb65394865678903985ec683ba4f3fb39de258248e83
cites cdi_FETCH-LOGICAL-c291t-1a7b8e7f9774657d90d70cb65394865678903985ec683ba4f3fb39de258248e83
container_end_page
container_issue 7
container_start_page 1644
container_title Remote sensing (Basel, Switzerland)
container_volume 14
creator Guo, Xianyu
Yin, Junjun
Li, Kun
Yang, Jian
Shao, Yun
description Because transmitting polarization can be an arbitrary elliptical wave, and theoretically, there are numerous possibilities of hybrid dual-pol modes, therefore, it is necessary to explore the feature recognition and classification ability of compact polarimetric (CP) parameters under different transmitting and receiving modes to different ground objects. In this paper, we first simulated, extracted, and analyzed the scattering intensity of two types of rice of six temporal CP synthetic aperture radar (SAR) data under three transmitting modes. Then, during different phenology stages, the optimal parameters for distinguishing transplanting hybrid rice (T–H) and direct-sown japonica rice (D–J) were acquired. Finally, a decision tree classification model was established based on the optimal parameters to carry out the fine classification of the two types of rice and to verify the results. The results showed that this strategy can obtain a high classification accuracy for the two types of rice with an overall classification accuracy of more than 95% and a kappa coefficient of more than 0.94. In addition, and importantly, we found that the CP parameters in the 1103 period (harvest stage) were the best CP parameters to distinguish the two types of rice, followed by the 0730 (seedling–elongation stage), 0612 (seedling stage), and 0916 (heading–flowering stage) periods.
doi_str_mv 10.3390/rs14071644
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c3ab5979028c421282bb80070159cdf0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c3ab5979028c421282bb80070159cdf0</doaj_id><sourcerecordid>2649091401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1a7b8e7f9774657d90d70cb65394865678903985ec683ba4f3fb39de258248e83</originalsourceid><addsrcrecordid>eNpNUdtKxDAQLaKgqC9-QcA3oZpbm-RxXW8LiuKuz2GappKl29Qki-x_-MFGV9R5mduZM8Ocojgh-JwxhS9CJBwLUnO-UxxQLGjJqaK7_-L94jjGJc7GGFGYHxQfcwMp2eCGVzQbkh2iSxs0GaDfRBcRDC2a9hCj61wGOj8g36HFu0eLzWjjV_LsjEWXEG2Lcvdh3SdXLuxq9AH67_lt6cG3Fs3dat1DytCpX41gEnryPQS3sik4g-aTZ3QFCY6KvQ76aI9__GHxcnO9mN6V94-3s-nkvjRUkVQSEI20olNC8LoSrcKtwKapK6a4rKtaSIWZkpU1tWQN8I51DVOtpZWkXFrJDovZlrf1sNRjvgPCRntw-rvgw6uGkJzprTYMmkoJhak0nBIqadNIjAUmlTJthzPX6ZZrDP5tbWPSS78O-Y9R05orrLI2JKPOtigTfIzBdr9bCdZfIuo_EdknVHWNrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649091401</pqid></control><display><type>article</type><title>Scattering Intensity Analysis and Classification of Two Types of Rice Based on Multi-Temporal and Multi-Mode Simulated Compact Polarimetric SAR Data</title><source>Publicly Available Content Database</source><creator>Guo, Xianyu ; Yin, Junjun ; Li, Kun ; Yang, Jian ; Shao, Yun</creator><creatorcontrib>Guo, Xianyu ; Yin, Junjun ; Li, Kun ; Yang, Jian ; Shao, Yun</creatorcontrib><description>Because transmitting polarization can be an arbitrary elliptical wave, and theoretically, there are numerous possibilities of hybrid dual-pol modes, therefore, it is necessary to explore the feature recognition and classification ability of compact polarimetric (CP) parameters under different transmitting and receiving modes to different ground objects. In this paper, we first simulated, extracted, and analyzed the scattering intensity of two types of rice of six temporal CP synthetic aperture radar (SAR) data under three transmitting modes. Then, during different phenology stages, the optimal parameters for distinguishing transplanting hybrid rice (T–H) and direct-sown japonica rice (D–J) were acquired. Finally, a decision tree classification model was established based on the optimal parameters to carry out the fine classification of the two types of rice and to verify the results. The results showed that this strategy can obtain a high classification accuracy for the two types of rice with an overall classification accuracy of more than 95% and a kappa coefficient of more than 0.94. In addition, and importantly, we found that the CP parameters in the 1103 period (harvest stage) were the best CP parameters to distinguish the two types of rice, followed by the 0730 (seedling–elongation stage), 0612 (seedling stage), and 0916 (heading–flowering stage) periods.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs14071644</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Classification ; compact polarimetric (CP) SAR ; Decision trees ; Elongation ; Feature recognition ; Flowering ; Global positioning systems ; GPS ; multi-mode and classification ; Object recognition ; Parameters ; Phenology ; Polarimetry ; Remote sensing ; Rice ; Scattering ; scattering intensity ; Seedlings ; Synthetic aperture radar ; Transmission</subject><ispartof>Remote sensing (Basel, Switzerland), 2022-04, Vol.14 (7), p.1644</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1a7b8e7f9774657d90d70cb65394865678903985ec683ba4f3fb39de258248e83</citedby><cites>FETCH-LOGICAL-c291t-1a7b8e7f9774657d90d70cb65394865678903985ec683ba4f3fb39de258248e83</cites><orcidid>0000-0002-0901-0577 ; 0000-0002-5795-9533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2649091401/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2649091401?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Guo, Xianyu</creatorcontrib><creatorcontrib>Yin, Junjun</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Shao, Yun</creatorcontrib><title>Scattering Intensity Analysis and Classification of Two Types of Rice Based on Multi-Temporal and Multi-Mode Simulated Compact Polarimetric SAR Data</title><title>Remote sensing (Basel, Switzerland)</title><description>Because transmitting polarization can be an arbitrary elliptical wave, and theoretically, there are numerous possibilities of hybrid dual-pol modes, therefore, it is necessary to explore the feature recognition and classification ability of compact polarimetric (CP) parameters under different transmitting and receiving modes to different ground objects. In this paper, we first simulated, extracted, and analyzed the scattering intensity of two types of rice of six temporal CP synthetic aperture radar (SAR) data under three transmitting modes. Then, during different phenology stages, the optimal parameters for distinguishing transplanting hybrid rice (T–H) and direct-sown japonica rice (D–J) were acquired. Finally, a decision tree classification model was established based on the optimal parameters to carry out the fine classification of the two types of rice and to verify the results. The results showed that this strategy can obtain a high classification accuracy for the two types of rice with an overall classification accuracy of more than 95% and a kappa coefficient of more than 0.94. In addition, and importantly, we found that the CP parameters in the 1103 period (harvest stage) were the best CP parameters to distinguish the two types of rice, followed by the 0730 (seedling–elongation stage), 0612 (seedling stage), and 0916 (heading–flowering stage) periods.</description><subject>Classification</subject><subject>compact polarimetric (CP) SAR</subject><subject>Decision trees</subject><subject>Elongation</subject><subject>Feature recognition</subject><subject>Flowering</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>multi-mode and classification</subject><subject>Object recognition</subject><subject>Parameters</subject><subject>Phenology</subject><subject>Polarimetry</subject><subject>Remote sensing</subject><subject>Rice</subject><subject>Scattering</subject><subject>scattering intensity</subject><subject>Seedlings</subject><subject>Synthetic aperture radar</subject><subject>Transmission</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKxDAQLaKgqC9-QcA3oZpbm-RxXW8LiuKuz2GappKl29Qki-x_-MFGV9R5mduZM8Ocojgh-JwxhS9CJBwLUnO-UxxQLGjJqaK7_-L94jjGJc7GGFGYHxQfcwMp2eCGVzQbkh2iSxs0GaDfRBcRDC2a9hCj61wGOj8g36HFu0eLzWjjV_LsjEWXEG2Lcvdh3SdXLuxq9AH67_lt6cG3Fs3dat1DytCpX41gEnryPQS3sik4g-aTZ3QFCY6KvQ76aI9__GHxcnO9mN6V94-3s-nkvjRUkVQSEI20olNC8LoSrcKtwKapK6a4rKtaSIWZkpU1tWQN8I51DVOtpZWkXFrJDovZlrf1sNRjvgPCRntw-rvgw6uGkJzprTYMmkoJhak0nBIqadNIjAUmlTJthzPX6ZZrDP5tbWPSS78O-Y9R05orrLI2JKPOtigTfIzBdr9bCdZfIuo_EdknVHWNrw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Guo, Xianyu</creator><creator>Yin, Junjun</creator><creator>Li, Kun</creator><creator>Yang, Jian</creator><creator>Shao, Yun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0901-0577</orcidid><orcidid>https://orcid.org/0000-0002-5795-9533</orcidid></search><sort><creationdate>20220401</creationdate><title>Scattering Intensity Analysis and Classification of Two Types of Rice Based on Multi-Temporal and Multi-Mode Simulated Compact Polarimetric SAR Data</title><author>Guo, Xianyu ; Yin, Junjun ; Li, Kun ; Yang, Jian ; Shao, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1a7b8e7f9774657d90d70cb65394865678903985ec683ba4f3fb39de258248e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>compact polarimetric (CP) SAR</topic><topic>Decision trees</topic><topic>Elongation</topic><topic>Feature recognition</topic><topic>Flowering</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>multi-mode and classification</topic><topic>Object recognition</topic><topic>Parameters</topic><topic>Phenology</topic><topic>Polarimetry</topic><topic>Remote sensing</topic><topic>Rice</topic><topic>Scattering</topic><topic>scattering intensity</topic><topic>Seedlings</topic><topic>Synthetic aperture radar</topic><topic>Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xianyu</creatorcontrib><creatorcontrib>Yin, Junjun</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Shao, Yun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xianyu</au><au>Yin, Junjun</au><au>Li, Kun</au><au>Yang, Jian</au><au>Shao, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattering Intensity Analysis and Classification of Two Types of Rice Based on Multi-Temporal and Multi-Mode Simulated Compact Polarimetric SAR Data</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>14</volume><issue>7</issue><spage>1644</spage><pages>1644-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Because transmitting polarization can be an arbitrary elliptical wave, and theoretically, there are numerous possibilities of hybrid dual-pol modes, therefore, it is necessary to explore the feature recognition and classification ability of compact polarimetric (CP) parameters under different transmitting and receiving modes to different ground objects. In this paper, we first simulated, extracted, and analyzed the scattering intensity of two types of rice of six temporal CP synthetic aperture radar (SAR) data under three transmitting modes. Then, during different phenology stages, the optimal parameters for distinguishing transplanting hybrid rice (T–H) and direct-sown japonica rice (D–J) were acquired. Finally, a decision tree classification model was established based on the optimal parameters to carry out the fine classification of the two types of rice and to verify the results. The results showed that this strategy can obtain a high classification accuracy for the two types of rice with an overall classification accuracy of more than 95% and a kappa coefficient of more than 0.94. In addition, and importantly, we found that the CP parameters in the 1103 period (harvest stage) were the best CP parameters to distinguish the two types of rice, followed by the 0730 (seedling–elongation stage), 0612 (seedling stage), and 0916 (heading–flowering stage) periods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs14071644</doi><orcidid>https://orcid.org/0000-0002-0901-0577</orcidid><orcidid>https://orcid.org/0000-0002-5795-9533</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2022-04, Vol.14 (7), p.1644
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c3ab5979028c421282bb80070159cdf0
source Publicly Available Content Database
subjects Classification
compact polarimetric (CP) SAR
Decision trees
Elongation
Feature recognition
Flowering
Global positioning systems
GPS
multi-mode and classification
Object recognition
Parameters
Phenology
Polarimetry
Remote sensing
Rice
Scattering
scattering intensity
Seedlings
Synthetic aperture radar
Transmission
title Scattering Intensity Analysis and Classification of Two Types of Rice Based on Multi-Temporal and Multi-Mode Simulated Compact Polarimetric SAR Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattering%20Intensity%20Analysis%20and%20Classification%20of%20Two%20Types%20of%20Rice%20Based%20on%20Multi-Temporal%20and%20Multi-Mode%20Simulated%20Compact%20Polarimetric%20SAR%20Data&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Guo,%20Xianyu&rft.date=2022-04-01&rft.volume=14&rft.issue=7&rft.spage=1644&rft.pages=1644-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs14071644&rft_dat=%3Cproquest_doaj_%3E2649091401%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-1a7b8e7f9774657d90d70cb65394865678903985ec683ba4f3fb39de258248e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2649091401&rft_id=info:pmid/&rfr_iscdi=true