Loading…
In situ electroporation of mammalian cells through SiO2 thin film capacitive microelectrodes
Electroporation is a widely used non-viral technique for the delivery of molecules, including nucleic acids, into cells. Recently, electronic microsystems that miniaturize the electroporation machinery have been developed as a new tool for genetic manipulation of cells in vitro, by integrating metal...
Saved in:
Published in: | Scientific reports 2021-07, Vol.11 (1), p.15126-15126, Article 15126 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electroporation is a widely used non-viral technique for the delivery of molecules, including nucleic acids, into cells. Recently, electronic microsystems that miniaturize the electroporation machinery have been developed as a new tool for genetic manipulation of cells in vitro, by integrating metal microelectrodes in the culture substrate and enabling electroporation in-situ. We report that non-faradic SiO
2
thin film-insulated microelectrodes can be used for reliable and spatially selective in-situ electroporation of mammalian cells. CHO-K1 and SH-SY5Y cell lines and primary neuronal cultures were electroporated by application of short and low amplitude voltage transients leading to cell electroporation by capacitive currents. We demonstrate reliable delivery of DNA plasmids and exogenous gene expression, accompanied by high spatial selectivity and cell viability, even with differentiated neurons. Finally, we show that SiO
2
thin film-insulated microelectrodes support a double and serial transfection of the targeted cells. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-94620-8 |