Loading…
Tip-enhanced Raman spectroscopy with amplitude-controlled tapping-mode AFM
Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for analyzing chemical compositions at the nanoscale owing to near-field light localized at a metallic tip. In TERS, atomic force microscopy (AFM) is commonly used for tip position control. AFM is often controlled under the contact mode for T...
Saved in:
Published in: | Scientific reports 2022-07, Vol.12 (1), p.12776-12776, Article 12776 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for analyzing chemical compositions at the nanoscale owing to near-field light localized at a metallic tip. In TERS, atomic force microscopy (AFM) is commonly used for tip position control. AFM is often controlled under the contact mode for TERS, whereas the tapping mode, which is another major operation mode, has not often been employed despite several advantages, such as low sample damage. One of the reasons is the low TERS signal intensity because the tip is mostly away from the sample during the tapping motion. In this study, we quantitatively investigated the effect of the tapping amplitude on the TERS signal. We numerically evaluated the dependence of the TERS signal on tapping amplitude. We found that the tapping amplitude had a significant effect on the TERS signal, and an acceptable level of TERS signal was obtained by reducing the amplitude to a few nanometers. We further demonstrated amplitude-controlled tapping-mode TERS measurement. We observed a strong dependence of the TERS intensity on the tapping amplitude, which is in agreement with our numerical calculations. This practical but essential study encourages the use of the tapping mode for further advancing TERS and related optical techniques. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-17170-7 |