Loading…
Disulfiram Exerts Antifibrotic and Anti-Inflammatory Therapeutic Effects on Perimysial Orbital Fibroblasts in Graves' Orbitopathy
Fibrosis of extraocular muscles (EOMs) is a marker of end-stage in Graves' orbitopathy (GO). To determine the antifibrotic and anti-inflammatory therapeutic effects and the underlying molecular mechanisms of disulfiram (DSF) on perimysial orbital fibroblasts (pOFs) in a GO model in vitro, prima...
Saved in:
Published in: | International journal of molecular sciences 2022-05, Vol.23 (9), p.5261 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fibrosis of extraocular muscles (EOMs) is a marker of end-stage in Graves' orbitopathy (GO). To determine the antifibrotic and anti-inflammatory therapeutic effects and the underlying molecular mechanisms of disulfiram (DSF) on perimysial orbital fibroblasts (pOFs) in a GO model in vitro, primary cultures of pOFs from eight patients with GO and six subjects without GO (NG) were established. CCK-8 and EdU assays, IF, qPCR, WB, three-dimensional collagen gel contraction assays, cell scratch experiments, and ELISAs were performed. After TGF-β1 stimulation of pOFs, the proliferation rate of the GO group but not the NG group increased significantly. DSF dose-dependently inhibited the proliferation, contraction, and migration of pOFs in the GO group. Additionally, DSF dose-dependently inhibited fibrosis and extracellular matrix production markers (FN1, COL1A1, α-SMA, CTGF) at the mRNA and protein levels. Furthermore, DSF mediates antifibrotic effects on GO pOFs partially through the ERK-Snail signaling pathway. In addition, DSF attenuated HA production and suppressed inflammatory chemokine molecule expression induced by TGF-β1 in GO pOFs. In this in vitro study, we demonstrate the inhibitory effect of DSF on pOFs fibrosis in GO, HA production, and inflammation. DSF may be a potential drug candidate for preventing and treating tissue fibrosis in GO. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms23095261 |