Loading…

Fabrication of 150‐nm AlGaN/GaN field‐plated High Electron Mobility Transistors using i‐line stepper

This article reports a high throughput 150‐nm‐gate AlGaN/GaN high electron mobility transistor (HEMT) process using i‐line stepper lithography and a thermal reflow technique. Optimizing thermal reflow conditions, fabrication of a 150‐nm gate structure was successfully realized with the initial resis...

Full description

Saved in:
Bibliographic Details
Published in:Electronics letters 2021-11, Vol.57 (24), p.948-949
Main Authors: Ando, Yuji, Makisako, Ryutaro, Takahashi, Hidemasa, Wakejima, Akio, Suda, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4423-696fac0adc658e5cad682a0744a5c21830d3c440821cae1cb9964a0be51453d23
cites cdi_FETCH-LOGICAL-c4423-696fac0adc658e5cad682a0744a5c21830d3c440821cae1cb9964a0be51453d23
container_end_page 949
container_issue 24
container_start_page 948
container_title Electronics letters
container_volume 57
creator Ando, Yuji
Makisako, Ryutaro
Takahashi, Hidemasa
Wakejima, Akio
Suda, Jun
description This article reports a high throughput 150‐nm‐gate AlGaN/GaN high electron mobility transistor (HEMT) process using i‐line stepper lithography and a thermal reflow technique. Optimizing thermal reflow conditions, fabrication of a 150‐nm gate structure was successfully realized with the initial resist opening of 0.7 μm. AlGaN/GaN field‐plated HEMTs were fabricated on a semi‐insulating SiC substrate by using this process. In spite of unoptimized structures, fabricated 150‐nm gate devices exhibited the maximum drain current of 0.65 A/mm and the gate‐drain breakdown voltage exceeding 200 V. Based on cold HEMT extraction measurements, the average gate length of 187 nm and the standard deviation of 30 nm were obtained on a quarter 4‐in. wafer.
doi_str_mv 10.1049/ell2.12303
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c4089ebe3da344e09f0a4a653c6cd516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c4089ebe3da344e09f0a4a653c6cd516</doaj_id><sourcerecordid>3092804375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4423-696fac0adc658e5cad682a0744a5c21830d3c440821cae1cb9964a0be51453d23</originalsourceid><addsrcrecordid>eNp9kU1qHDEQhYVJIBM7m5xAkF2gbf32tJbGjH9gEm8cyE5US9VjDXKrI_UQZucj5Iw5SWR3yDKLoqjie68KHiEfOTvnTJkLjFGccyGZPCErLjVrDOff35AVY1w2mhv1jrwvZV9HYcx6RfbX0OfgYA5ppGmgXLPfz7_GJ3oZb-DrRS06BIy-LqcIM3p6G3aPdBPRzblKvqQ-xDAf6UOGsYQyp1zooYRxR0PVxDAiLTNOE-Yz8naAWPDD335Kvl1vHq5um-39zd3V5bZxSgnZtKYdwDHwrtUdage-7QSwtVKgneCdZF5WknWCO0DuemNaBaxHzZWWXshTcrf4-gR7O-XwBPloEwT7ukh5ZyHPwUW0rtoY7FF6kEohMwMDBa2WrnVe87Z6fVq8ppx-HLDMdp8OeazvW8mM6JiSa12pzwvlciol4_DvKmf2JRf7kot9zaXCfIF_hojH_5B2s92KRfMHztSRHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092804375</pqid></control><display><type>article</type><title>Fabrication of 150‐nm AlGaN/GaN field‐plated High Electron Mobility Transistors using i‐line stepper</title><source>IET Digital Library</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Ando, Yuji ; Makisako, Ryutaro ; Takahashi, Hidemasa ; Wakejima, Akio ; Suda, Jun</creator><creatorcontrib>Ando, Yuji ; Makisako, Ryutaro ; Takahashi, Hidemasa ; Wakejima, Akio ; Suda, Jun</creatorcontrib><description>This article reports a high throughput 150‐nm‐gate AlGaN/GaN high electron mobility transistor (HEMT) process using i‐line stepper lithography and a thermal reflow technique. Optimizing thermal reflow conditions, fabrication of a 150‐nm gate structure was successfully realized with the initial resist opening of 0.7 μm. AlGaN/GaN field‐plated HEMTs were fabricated on a semi‐insulating SiC substrate by using this process. In spite of unoptimized structures, fabricated 150‐nm gate devices exhibited the maximum drain current of 0.65 A/mm and the gate‐drain breakdown voltage exceeding 200 V. Based on cold HEMT extraction measurements, the average gate length of 187 nm and the standard deviation of 30 nm were obtained on a quarter 4‐in. wafer.</description><identifier>ISSN: 0013-5194</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/ell2.12303</identifier><language>eng</language><publisher>Stevenage: John Wiley &amp; Sons, Inc</publisher><subject>Aluminum gallium nitrides ; Electric fields ; Electron microscopes ; Gallium nitrides ; High electron mobility transistors ; Lithography (semiconductor technology) ; Monte Carlo simulation ; Other field effect devices ; Plasma etching ; R&amp;D ; Receivers &amp; amplifiers ; Research &amp; development ; Semiconductor devices ; Silicon substrates ; Transistors</subject><ispartof>Electronics letters, 2021-11, Vol.57 (24), p.948-949</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4423-696fac0adc658e5cad682a0744a5c21830d3c440821cae1cb9964a0be51453d23</citedby><cites>FETCH-LOGICAL-c4423-696fac0adc658e5cad682a0744a5c21830d3c440821cae1cb9964a0be51453d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fell2.12303$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fell2.12303$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Ando, Yuji</creatorcontrib><creatorcontrib>Makisako, Ryutaro</creatorcontrib><creatorcontrib>Takahashi, Hidemasa</creatorcontrib><creatorcontrib>Wakejima, Akio</creatorcontrib><creatorcontrib>Suda, Jun</creatorcontrib><title>Fabrication of 150‐nm AlGaN/GaN field‐plated High Electron Mobility Transistors using i‐line stepper</title><title>Electronics letters</title><description>This article reports a high throughput 150‐nm‐gate AlGaN/GaN high electron mobility transistor (HEMT) process using i‐line stepper lithography and a thermal reflow technique. Optimizing thermal reflow conditions, fabrication of a 150‐nm gate structure was successfully realized with the initial resist opening of 0.7 μm. AlGaN/GaN field‐plated HEMTs were fabricated on a semi‐insulating SiC substrate by using this process. In spite of unoptimized structures, fabricated 150‐nm gate devices exhibited the maximum drain current of 0.65 A/mm and the gate‐drain breakdown voltage exceeding 200 V. Based on cold HEMT extraction measurements, the average gate length of 187 nm and the standard deviation of 30 nm were obtained on a quarter 4‐in. wafer.</description><subject>Aluminum gallium nitrides</subject><subject>Electric fields</subject><subject>Electron microscopes</subject><subject>Gallium nitrides</subject><subject>High electron mobility transistors</subject><subject>Lithography (semiconductor technology)</subject><subject>Monte Carlo simulation</subject><subject>Other field effect devices</subject><subject>Plasma etching</subject><subject>R&amp;D</subject><subject>Receivers &amp; amplifiers</subject><subject>Research &amp; development</subject><subject>Semiconductor devices</subject><subject>Silicon substrates</subject><subject>Transistors</subject><issn>0013-5194</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1qHDEQhYVJIBM7m5xAkF2gbf32tJbGjH9gEm8cyE5US9VjDXKrI_UQZucj5Iw5SWR3yDKLoqjie68KHiEfOTvnTJkLjFGccyGZPCErLjVrDOff35AVY1w2mhv1jrwvZV9HYcx6RfbX0OfgYA5ppGmgXLPfz7_GJ3oZb-DrRS06BIy-LqcIM3p6G3aPdBPRzblKvqQ-xDAf6UOGsYQyp1zooYRxR0PVxDAiLTNOE-Yz8naAWPDD335Kvl1vHq5um-39zd3V5bZxSgnZtKYdwDHwrtUdage-7QSwtVKgneCdZF5WknWCO0DuemNaBaxHzZWWXshTcrf4-gR7O-XwBPloEwT7ukh5ZyHPwUW0rtoY7FF6kEohMwMDBa2WrnVe87Z6fVq8ppx-HLDMdp8OeazvW8mM6JiSa12pzwvlciol4_DvKmf2JRf7kot9zaXCfIF_hojH_5B2s92KRfMHztSRHg</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Ando, Yuji</creator><creator>Makisako, Ryutaro</creator><creator>Takahashi, Hidemasa</creator><creator>Wakejima, Akio</creator><creator>Suda, Jun</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>202111</creationdate><title>Fabrication of 150‐nm AlGaN/GaN field‐plated High Electron Mobility Transistors using i‐line stepper</title><author>Ando, Yuji ; Makisako, Ryutaro ; Takahashi, Hidemasa ; Wakejima, Akio ; Suda, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4423-696fac0adc658e5cad682a0744a5c21830d3c440821cae1cb9964a0be51453d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum gallium nitrides</topic><topic>Electric fields</topic><topic>Electron microscopes</topic><topic>Gallium nitrides</topic><topic>High electron mobility transistors</topic><topic>Lithography (semiconductor technology)</topic><topic>Monte Carlo simulation</topic><topic>Other field effect devices</topic><topic>Plasma etching</topic><topic>R&amp;D</topic><topic>Receivers &amp; amplifiers</topic><topic>Research &amp; development</topic><topic>Semiconductor devices</topic><topic>Silicon substrates</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ando, Yuji</creatorcontrib><creatorcontrib>Makisako, Ryutaro</creatorcontrib><creatorcontrib>Takahashi, Hidemasa</creatorcontrib><creatorcontrib>Wakejima, Akio</creatorcontrib><creatorcontrib>Suda, Jun</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ando, Yuji</au><au>Makisako, Ryutaro</au><au>Takahashi, Hidemasa</au><au>Wakejima, Akio</au><au>Suda, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of 150‐nm AlGaN/GaN field‐plated High Electron Mobility Transistors using i‐line stepper</atitle><jtitle>Electronics letters</jtitle><date>2021-11</date><risdate>2021</risdate><volume>57</volume><issue>24</issue><spage>948</spage><epage>949</epage><pages>948-949</pages><issn>0013-5194</issn><eissn>1350-911X</eissn><abstract>This article reports a high throughput 150‐nm‐gate AlGaN/GaN high electron mobility transistor (HEMT) process using i‐line stepper lithography and a thermal reflow technique. Optimizing thermal reflow conditions, fabrication of a 150‐nm gate structure was successfully realized with the initial resist opening of 0.7 μm. AlGaN/GaN field‐plated HEMTs were fabricated on a semi‐insulating SiC substrate by using this process. In spite of unoptimized structures, fabricated 150‐nm gate devices exhibited the maximum drain current of 0.65 A/mm and the gate‐drain breakdown voltage exceeding 200 V. Based on cold HEMT extraction measurements, the average gate length of 187 nm and the standard deviation of 30 nm were obtained on a quarter 4‐in. wafer.</abstract><cop>Stevenage</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1049/ell2.12303</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-5194
ispartof Electronics letters, 2021-11, Vol.57 (24), p.948-949
issn 0013-5194
1350-911X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c4089ebe3da344e09f0a4a653c6cd516
source IET Digital Library; Open Access: Wiley-Blackwell Open Access Journals
subjects Aluminum gallium nitrides
Electric fields
Electron microscopes
Gallium nitrides
High electron mobility transistors
Lithography (semiconductor technology)
Monte Carlo simulation
Other field effect devices
Plasma etching
R&D
Receivers & amplifiers
Research & development
Semiconductor devices
Silicon substrates
Transistors
title Fabrication of 150‐nm AlGaN/GaN field‐plated High Electron Mobility Transistors using i‐line stepper
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20150%E2%80%90nm%20AlGaN/GaN%20field%E2%80%90plated%20High%20Electron%20Mobility%20Transistors%20using%20i%E2%80%90line%20stepper&rft.jtitle=Electronics%20letters&rft.au=Ando,%20Yuji&rft.date=2021-11&rft.volume=57&rft.issue=24&rft.spage=948&rft.epage=949&rft.pages=948-949&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/ell2.12303&rft_dat=%3Cproquest_doaj_%3E3092804375%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4423-696fac0adc658e5cad682a0744a5c21830d3c440821cae1cb9964a0be51453d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092804375&rft_id=info:pmid/&rfr_iscdi=true