Loading…

Synthesis of the Perovskite-Type BaCe0.8Pr0.05Cu0.15O3-δ via EDTA-Citrate

BaCeO3-based ceramics are ionic and electronic conductors that can be applied to oxygen sensors, solid oxide fuel cells and oxygen permeable membranes. However, the low chemical stability at high temperatures of these materials motivates studies involving doping of A and/or B sites of the perovskite...

Full description

Saved in:
Bibliographic Details
Published in:Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2017-01, Vol.20 (suppl 2), p.447-451
Main Authors: Santos, Andarair Gomes dos, dos Santos, Francisco Klebson Gomes, de Macedo, Daniel Araujo, Lobato, Maxwell Ferreira, da Silva Filho, Ernani Dias, Vital, Angélica Belchior, de Souza, Carlson Pereira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BaCeO3-based ceramics are ionic and electronic conductors that can be applied to oxygen sensors, solid oxide fuel cells and oxygen permeable membranes. However, the low chemical stability at high temperatures of these materials motivates studies involving doping of A and/or B sites of the perovskite structure. In this context, the present work aimed to synthesize a new BaCe0.8Pr0.05Cu0.15O3-δ material using the chemical route of complexation which combines EDTA-Citrate with pH variation. The powders obtained at pH 3 or 11 and calcined up to 900 ºC are thermally unstable. The cubic perovskite BaCe0.8Pr0.05Cu0.15O3-δ with crystallite size between 99.4 nm and 131.6 nm was obtained along with barium carbonate traces. In the powders calcined at 1000 ºC the pH increase decreases the amount of barium carbonate (17.3% to pH 3, 3.4% to pH 7 and 1.8% to pH 11), but increases the size of grains with irregular shapes.
ISSN:1516-1439
1980-5373
1980-5373
DOI:10.1590/1980-5373-mr-2016-1081