Loading…

Multi-Role Surface Modification of Single-Crystalline Nickel-Rich Lithium Nickel Cobalt Manganese Oxides Cathodes with WO3 to Improve Performance for Lithium-Ion Batteries

Compared with the polycrystalline system, the single-crystalline ternary cathode material has better cycle stability because the only primary particles without grain boundaries effectively alleviate the formation of micro/nanocracks and retain better structural integrity. Therefore, it has received...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-04, Vol.12 (8), p.1324
Main Authors: Ou, Limin, Nong, Shengheng, Yang, Ruoxi, Li, Yaoying, Tao, Jinrong, Zhang, Pan, Huang, Haifu, Liang, Xianqing, Lan, Zhiqiang, Liu, Haizhen, Huang, Dan, Guo, Jin, Zhou, Wenzheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Compared with the polycrystalline system, the single-crystalline ternary cathode material has better cycle stability because the only primary particles without grain boundaries effectively alleviate the formation of micro/nanocracks and retain better structural integrity. Therefore, it has received extensive research attention. There is no consistent result whether tungsten oxide acts as doping and/or coating from the surface modification of the polycrystalline system. Meanwhile, there is no report on the surface modification of the single-crystalline system by tungsten oxide. In this paper, multirole surface modification of single-crystalline nickel-rich ternary cathode material LiNi0.6Co0.2Mn0.2O2 by WO3 is studied by a simple method of adding WO3 followed by calcination. The results show that with the change in the amount of WO3 added, single-crystalline nickel-rich ternary cathode material can be separately doped, separately coated, and both doped and coated. Either doping or coating effectively enhances the structural stability, reduces the polarization of the material, and improves the lithium-ion diffusion kinetics, thus improving the cycle stability and rate performance of the battery. Interestingly, both doping and coating (for SC-NCM622-0.5%WO3) do not show a more excellent synergistic effect, while the single coating (for SC-NCM622-1.0%WO3) after eliminating the rock-salt phase layer performs the most excellent modification effect.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano12081324