Loading…

Natural Transformations between Induction and Restriction on Iterated Wreath Product of Symmetric Group of Order 2

Let CAn=C[S2≀S2≀⋯≀S2] be the group algebra of an n-step iterated wreath product. We prove some structural properties of An such as their centers, centralizers, and right and double cosets. We apply these results to explicitly write down the Mackey theorem for groups An and give a partial description...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-10, Vol.10 (20), p.3761
Main Authors: Im, Mee Seong, Oğuz, Can Ozan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3
cites cdi_FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3
container_end_page
container_issue 20
container_start_page 3761
container_title Mathematics (Basel)
container_volume 10
creator Im, Mee Seong
Oğuz, Can Ozan
description Let CAn=C[S2≀S2≀⋯≀S2] be the group algebra of an n-step iterated wreath product. We prove some structural properties of An such as their centers, centralizers, and right and double cosets. We apply these results to explicitly write down the Mackey theorem for groups An and give a partial description of the natural transformations between induction and restriction functors on the representations of the iterated wreath product tower by computing certain hom spaces of the category of ⨁m≥0(Am,An)−bimodules. A complete description of the category is an open problem.
doi_str_mv 10.3390/math10203761
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c4215de50461411bb0be34f7ba4bfe51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744754072</galeid><doaj_id>oai_doaj_org_article_c4215de50461411bb0be34f7ba4bfe51</doaj_id><sourcerecordid>A744754072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3</originalsourceid><addsrcrecordid>eNpNkVFr2zAQx81oYaHL2z6AoK9NJ8mSFT-GsLaBso61pY_iLJ06h9jKzjIj337yPEaEQNJf__tJd1cUnwW_Lcuaf-kg_RRc8tJU4kOxkFKalckXF2f7j8VyGPY8j1qUa1UvCvoGaSQ4sBeCfgiRMqaN_cAaTL8Re7br_egmiUHv2Q8cErXzOc9dQoKEnr0R5ufZd4qTm8XAnk9dh5OX3VMcj5P0RB6JyU_FZYDDgMt_61Xxevf1Zfuweny63203jyuneJVW4AV3CA4Eb6Tk0ol1vS4xhFBr5NwZ2SivvK6ahjtX5cyD8QYr74Q3WrryqtjNXB9hb4_UdkAnG6G1f4VI7xYote6A1ikptEfNVSWUEJnYYKmCaUA1AbXIrOuZdaT4a8xFsPs4Up-_b6WRuZJaC5Ndt7PrHTK07UNMlBNw4LFrXewxtFnfGKWMVtzIHHAzBziKw0AY_n9TcDt11Z53tfwDNAWWAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728495517</pqid></control><display><type>article</type><title>Natural Transformations between Induction and Restriction on Iterated Wreath Product of Symmetric Group of Order 2</title><source>Publicly Available Content Database</source><creator>Im, Mee Seong ; Oğuz, Can Ozan</creator><creatorcontrib>Im, Mee Seong ; Oğuz, Can Ozan</creatorcontrib><description>Let CAn=C[S2≀S2≀⋯≀S2] be the group algebra of an n-step iterated wreath product. We prove some structural properties of An such as their centers, centralizers, and right and double cosets. We apply these results to explicitly write down the Mackey theorem for groups An and give a partial description of the natural transformations between induction and restriction functors on the representations of the iterated wreath product tower by computing certain hom spaces of the category of ⨁m≥0(Am,An)−bimodules. A complete description of the category is an open problem.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10203761</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>categorification ; Frobenius algebras ; Group theory ; Heisenberg categories ; iterated wreath product algebras ; Mathematical research ; Oil field equipment ; Transformations (Mathematics)</subject><ispartof>Mathematics (Basel), 2022-10, Vol.10 (20), p.3761</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3</citedby><cites>FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3</cites><orcidid>0000-0003-1587-9145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728495517/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728495517?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Im, Mee Seong</creatorcontrib><creatorcontrib>Oğuz, Can Ozan</creatorcontrib><title>Natural Transformations between Induction and Restriction on Iterated Wreath Product of Symmetric Group of Order 2</title><title>Mathematics (Basel)</title><description>Let CAn=C[S2≀S2≀⋯≀S2] be the group algebra of an n-step iterated wreath product. We prove some structural properties of An such as their centers, centralizers, and right and double cosets. We apply these results to explicitly write down the Mackey theorem for groups An and give a partial description of the natural transformations between induction and restriction functors on the representations of the iterated wreath product tower by computing certain hom spaces of the category of ⨁m≥0(Am,An)−bimodules. A complete description of the category is an open problem.</description><subject>categorification</subject><subject>Frobenius algebras</subject><subject>Group theory</subject><subject>Heisenberg categories</subject><subject>iterated wreath product algebras</subject><subject>Mathematical research</subject><subject>Oil field equipment</subject><subject>Transformations (Mathematics)</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFr2zAQx81oYaHL2z6AoK9NJ8mSFT-GsLaBso61pY_iLJ06h9jKzjIj337yPEaEQNJf__tJd1cUnwW_Lcuaf-kg_RRc8tJU4kOxkFKalckXF2f7j8VyGPY8j1qUa1UvCvoGaSQ4sBeCfgiRMqaN_cAaTL8Re7br_egmiUHv2Q8cErXzOc9dQoKEnr0R5ufZd4qTm8XAnk9dh5OX3VMcj5P0RB6JyU_FZYDDgMt_61Xxevf1Zfuweny63203jyuneJVW4AV3CA4Eb6Tk0ol1vS4xhFBr5NwZ2SivvK6ahjtX5cyD8QYr74Q3WrryqtjNXB9hb4_UdkAnG6G1f4VI7xYote6A1ikptEfNVSWUEJnYYKmCaUA1AbXIrOuZdaT4a8xFsPs4Up-_b6WRuZJaC5Ndt7PrHTK07UNMlBNw4LFrXewxtFnfGKWMVtzIHHAzBziKw0AY_n9TcDt11Z53tfwDNAWWAQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Im, Mee Seong</creator><creator>Oğuz, Can Ozan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1587-9145</orcidid></search><sort><creationdate>20221001</creationdate><title>Natural Transformations between Induction and Restriction on Iterated Wreath Product of Symmetric Group of Order 2</title><author>Im, Mee Seong ; Oğuz, Can Ozan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>categorification</topic><topic>Frobenius algebras</topic><topic>Group theory</topic><topic>Heisenberg categories</topic><topic>iterated wreath product algebras</topic><topic>Mathematical research</topic><topic>Oil field equipment</topic><topic>Transformations (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Im, Mee Seong</creatorcontrib><creatorcontrib>Oğuz, Can Ozan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Im, Mee Seong</au><au>Oğuz, Can Ozan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural Transformations between Induction and Restriction on Iterated Wreath Product of Symmetric Group of Order 2</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>10</volume><issue>20</issue><spage>3761</spage><pages>3761-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Let CAn=C[S2≀S2≀⋯≀S2] be the group algebra of an n-step iterated wreath product. We prove some structural properties of An such as their centers, centralizers, and right and double cosets. We apply these results to explicitly write down the Mackey theorem for groups An and give a partial description of the natural transformations between induction and restriction functors on the representations of the iterated wreath product tower by computing certain hom spaces of the category of ⨁m≥0(Am,An)−bimodules. A complete description of the category is an open problem.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10203761</doi><orcidid>https://orcid.org/0000-0003-1587-9145</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2022-10, Vol.10 (20), p.3761
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c4215de50461411bb0be34f7ba4bfe51
source Publicly Available Content Database
subjects categorification
Frobenius algebras
Group theory
Heisenberg categories
iterated wreath product algebras
Mathematical research
Oil field equipment
Transformations (Mathematics)
title Natural Transformations between Induction and Restriction on Iterated Wreath Product of Symmetric Group of Order 2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20Transformations%20between%20Induction%20and%20Restriction%20on%20Iterated%20Wreath%20Product%20of%20Symmetric%20Group%20of%20Order%202&rft.jtitle=Mathematics%20(Basel)&rft.au=Im,%20Mee%20Seong&rft.date=2022-10-01&rft.volume=10&rft.issue=20&rft.spage=3761&rft.pages=3761-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10203761&rft_dat=%3Cgale_doaj_%3EA744754072%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728495517&rft_id=info:pmid/&rft_galeid=A744754072&rfr_iscdi=true