Loading…
Natural Transformations between Induction and Restriction on Iterated Wreath Product of Symmetric Group of Order 2
Let CAn=C[S2≀S2≀⋯≀S2] be the group algebra of an n-step iterated wreath product. We prove some structural properties of An such as their centers, centralizers, and right and double cosets. We apply these results to explicitly write down the Mackey theorem for groups An and give a partial description...
Saved in:
Published in: | Mathematics (Basel) 2022-10, Vol.10 (20), p.3761 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3 |
container_end_page | |
container_issue | 20 |
container_start_page | 3761 |
container_title | Mathematics (Basel) |
container_volume | 10 |
creator | Im, Mee Seong Oğuz, Can Ozan |
description | Let CAn=C[S2≀S2≀⋯≀S2] be the group algebra of an n-step iterated wreath product. We prove some structural properties of An such as their centers, centralizers, and right and double cosets. We apply these results to explicitly write down the Mackey theorem for groups An and give a partial description of the natural transformations between induction and restriction functors on the representations of the iterated wreath product tower by computing certain hom spaces of the category of ⨁m≥0(Am,An)−bimodules. A complete description of the category is an open problem. |
doi_str_mv | 10.3390/math10203761 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c4215de50461411bb0be34f7ba4bfe51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744754072</galeid><doaj_id>oai_doaj_org_article_c4215de50461411bb0be34f7ba4bfe51</doaj_id><sourcerecordid>A744754072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3</originalsourceid><addsrcrecordid>eNpNkVFr2zAQx81oYaHL2z6AoK9NJ8mSFT-GsLaBso61pY_iLJ06h9jKzjIj337yPEaEQNJf__tJd1cUnwW_Lcuaf-kg_RRc8tJU4kOxkFKalckXF2f7j8VyGPY8j1qUa1UvCvoGaSQ4sBeCfgiRMqaN_cAaTL8Re7br_egmiUHv2Q8cErXzOc9dQoKEnr0R5ufZd4qTm8XAnk9dh5OX3VMcj5P0RB6JyU_FZYDDgMt_61Xxevf1Zfuweny63203jyuneJVW4AV3CA4Eb6Tk0ol1vS4xhFBr5NwZ2SivvK6ahjtX5cyD8QYr74Q3WrryqtjNXB9hb4_UdkAnG6G1f4VI7xYote6A1ikptEfNVSWUEJnYYKmCaUA1AbXIrOuZdaT4a8xFsPs4Up-_b6WRuZJaC5Ndt7PrHTK07UNMlBNw4LFrXewxtFnfGKWMVtzIHHAzBziKw0AY_n9TcDt11Z53tfwDNAWWAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728495517</pqid></control><display><type>article</type><title>Natural Transformations between Induction and Restriction on Iterated Wreath Product of Symmetric Group of Order 2</title><source>Publicly Available Content Database</source><creator>Im, Mee Seong ; Oğuz, Can Ozan</creator><creatorcontrib>Im, Mee Seong ; Oğuz, Can Ozan</creatorcontrib><description>Let CAn=C[S2≀S2≀⋯≀S2] be the group algebra of an n-step iterated wreath product. We prove some structural properties of An such as their centers, centralizers, and right and double cosets. We apply these results to explicitly write down the Mackey theorem for groups An and give a partial description of the natural transformations between induction and restriction functors on the representations of the iterated wreath product tower by computing certain hom spaces of the category of ⨁m≥0(Am,An)−bimodules. A complete description of the category is an open problem.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10203761</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>categorification ; Frobenius algebras ; Group theory ; Heisenberg categories ; iterated wreath product algebras ; Mathematical research ; Oil field equipment ; Transformations (Mathematics)</subject><ispartof>Mathematics (Basel), 2022-10, Vol.10 (20), p.3761</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3</citedby><cites>FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3</cites><orcidid>0000-0003-1587-9145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728495517/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728495517?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Im, Mee Seong</creatorcontrib><creatorcontrib>Oğuz, Can Ozan</creatorcontrib><title>Natural Transformations between Induction and Restriction on Iterated Wreath Product of Symmetric Group of Order 2</title><title>Mathematics (Basel)</title><description>Let CAn=C[S2≀S2≀⋯≀S2] be the group algebra of an n-step iterated wreath product. We prove some structural properties of An such as their centers, centralizers, and right and double cosets. We apply these results to explicitly write down the Mackey theorem for groups An and give a partial description of the natural transformations between induction and restriction functors on the representations of the iterated wreath product tower by computing certain hom spaces of the category of ⨁m≥0(Am,An)−bimodules. A complete description of the category is an open problem.</description><subject>categorification</subject><subject>Frobenius algebras</subject><subject>Group theory</subject><subject>Heisenberg categories</subject><subject>iterated wreath product algebras</subject><subject>Mathematical research</subject><subject>Oil field equipment</subject><subject>Transformations (Mathematics)</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFr2zAQx81oYaHL2z6AoK9NJ8mSFT-GsLaBso61pY_iLJ06h9jKzjIj337yPEaEQNJf__tJd1cUnwW_Lcuaf-kg_RRc8tJU4kOxkFKalckXF2f7j8VyGPY8j1qUa1UvCvoGaSQ4sBeCfgiRMqaN_cAaTL8Re7br_egmiUHv2Q8cErXzOc9dQoKEnr0R5ufZd4qTm8XAnk9dh5OX3VMcj5P0RB6JyU_FZYDDgMt_61Xxevf1Zfuweny63203jyuneJVW4AV3CA4Eb6Tk0ol1vS4xhFBr5NwZ2SivvK6ahjtX5cyD8QYr74Q3WrryqtjNXB9hb4_UdkAnG6G1f4VI7xYote6A1ikptEfNVSWUEJnYYKmCaUA1AbXIrOuZdaT4a8xFsPs4Up-_b6WRuZJaC5Ndt7PrHTK07UNMlBNw4LFrXewxtFnfGKWMVtzIHHAzBziKw0AY_n9TcDt11Z53tfwDNAWWAQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Im, Mee Seong</creator><creator>Oğuz, Can Ozan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1587-9145</orcidid></search><sort><creationdate>20221001</creationdate><title>Natural Transformations between Induction and Restriction on Iterated Wreath Product of Symmetric Group of Order 2</title><author>Im, Mee Seong ; Oğuz, Can Ozan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>categorification</topic><topic>Frobenius algebras</topic><topic>Group theory</topic><topic>Heisenberg categories</topic><topic>iterated wreath product algebras</topic><topic>Mathematical research</topic><topic>Oil field equipment</topic><topic>Transformations (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Im, Mee Seong</creatorcontrib><creatorcontrib>Oğuz, Can Ozan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Im, Mee Seong</au><au>Oğuz, Can Ozan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural Transformations between Induction and Restriction on Iterated Wreath Product of Symmetric Group of Order 2</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>10</volume><issue>20</issue><spage>3761</spage><pages>3761-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Let CAn=C[S2≀S2≀⋯≀S2] be the group algebra of an n-step iterated wreath product. We prove some structural properties of An such as their centers, centralizers, and right and double cosets. We apply these results to explicitly write down the Mackey theorem for groups An and give a partial description of the natural transformations between induction and restriction functors on the representations of the iterated wreath product tower by computing certain hom spaces of the category of ⨁m≥0(Am,An)−bimodules. A complete description of the category is an open problem.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10203761</doi><orcidid>https://orcid.org/0000-0003-1587-9145</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2022-10, Vol.10 (20), p.3761 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c4215de50461411bb0be34f7ba4bfe51 |
source | Publicly Available Content Database |
subjects | categorification Frobenius algebras Group theory Heisenberg categories iterated wreath product algebras Mathematical research Oil field equipment Transformations (Mathematics) |
title | Natural Transformations between Induction and Restriction on Iterated Wreath Product of Symmetric Group of Order 2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20Transformations%20between%20Induction%20and%20Restriction%20on%20Iterated%20Wreath%20Product%20of%20Symmetric%20Group%20of%20Order%202&rft.jtitle=Mathematics%20(Basel)&rft.au=Im,%20Mee%20Seong&rft.date=2022-10-01&rft.volume=10&rft.issue=20&rft.spage=3761&rft.pages=3761-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10203761&rft_dat=%3Cgale_doaj_%3EA744754072%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-ad10ceaca10b2202c18983efff95e00c72b4d4d56bb0cc6020f7d7e6dc1d752c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728495517&rft_id=info:pmid/&rft_galeid=A744754072&rfr_iscdi=true |