Loading…

Development of an Anthropomorphic Heterogeneous Female Pelvic Phantom and Its Comparison with a Homogeneous Phantom in Advance Radiation Therapy: Dosimetry Analysis

Background: Accurate dosimetry is crucial in radiotherapy to ensure optimal radiation dose delivery to the tumor while sparing healthy tissues. Traditional dosimetry techniques using homogeneous phantoms may not accurately represent the complex anatomical variations in cervical cancer patients, high...

Full description

Saved in:
Bibliographic Details
Published in:Medical sciences (Basel) 2023-09, Vol.11 (3), p.59
Main Authors: Yadav, Neha, Singh, Manisha, Mishra, Surendra P, Ansari, Shahnawaz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Accurate dosimetry is crucial in radiotherapy to ensure optimal radiation dose delivery to the tumor while sparing healthy tissues. Traditional dosimetry techniques using homogeneous phantoms may not accurately represent the complex anatomical variations in cervical cancer patients, highlighting the need to compare dosimetry results obtained from different phantom models. Purpose: The aim of this study is to design and evaluate an anthropomorphic heterogeneous female pelvic (AHFP) phantom for radiotherapy quality assurance in cervical cancer treatment. Materials and method: Thirty RapidArc plans designed for cervical cancer patients were exported to both the RW3 homogeneous phantom and the anthropomorphic heterogeneous pelvic phantom. Dose calculations were performed using the anisotropic analytic algorithm (AAA), and the plans were delivered using a linear accelerator (LA). Dose measurements were obtained using a 0.6 cc ion chamber. The percentage (%) variation between planned and measured doses was calculated and analyzed. Additionally, relative dosimetry was performed for various target locations using RapidArc and IMRT treatment techniques. The AHFP phantom demonstrated excellent agreement between measured and expected dose distributions, making it a reliable quality assurance tool in radiotherapy. Results: The results reveal that the percentage variation between planned and measured doses for all RapidArc quality assurance (QA) plans using the AHFP phantom is 10.67% (maximum value), 2.31% (minimum value), and 6.89% (average value), with a standard deviation (SD) of 2.565 (t = 3.21604, p = 0.001063). Also, for the percentage of variation between homogeneous and AHFP phantoms, the t-value is −11.17016 and the p-value is
ISSN:2076-3271
2076-3271
DOI:10.3390/medsci11030059