Loading…
The Removal of Uranium and Thorium from Their Aqueous Solutions by 8-Hydroxyquinoline Immobilized Bentonite
The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microsco...
Saved in:
Published in: | Minerals (Basel) 2019-10, Vol.9 (10), p.626 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-8f2dc5b1e9438393e138a456bc7bab0f1851dbe4f78f8efbb67ba84158b994b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-8f2dc5b1e9438393e138a456bc7bab0f1851dbe4f78f8efbb67ba84158b994b23 |
container_end_page | |
container_issue | 10 |
container_start_page | 626 |
container_title | Minerals (Basel) |
container_volume | 9 |
creator | A. Salah, Bahaa S. Gaber, Mohamed T. Kandil, Abdel hakim |
description | The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively. |
doi_str_mv | 10.3390/min9100626 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c451990d6e384750850a94af35ab33b2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c451990d6e384750850a94af35ab33b2</doaj_id><sourcerecordid>2312011137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-8f2dc5b1e9438393e138a456bc7bab0f1851dbe4f78f8efbb67ba84158b994b23</originalsourceid><addsrcrecordid>eNpNUdFKwzAULaLgmHvxCwK-CdWkadrkcQ51g4GgG_gWkjZxmW3ulrbi_Hq7TdT7cs89HM69lxNFlwTfUCrwbe28IBhnSXYSDRKcs5hk9PX0Hz6PRk2zxn0JQjlLBtH7YmXQs6nhQ1UILFoG5V1XI-VLtFhB2GMboO4H4wIabzsDXYNeoOpaB75Beod4PN2VAT532855qJw3aFbXoF3lvkyJ7oxvwbvWXERnVlWNGf30YbR8uF9MpvH86XE2Gc_jgmakjblNyoJpYkRKORXU9KeqlGW6yLXS2BLOSKlNanNuubFaZz3PU8K4FiLVCR1Gs6NvCWotN8HVKuwkKCcPBIQ3qULrisrIImVECFxmhvI0Z5gzrESqLGVKU3rwujp6bQL0vzetXEMXfH--TChJMCGE5r3q-qgqAjRNMPZ3K8Fyn438y4Z-Aze4gbM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312011137</pqid></control><display><type>article</type><title>The Removal of Uranium and Thorium from Their Aqueous Solutions by 8-Hydroxyquinoline Immobilized Bentonite</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM Collection</source><creator>A. Salah, Bahaa ; S. Gaber, Mohamed ; T. Kandil, Abdel hakim</creator><creatorcontrib>A. Salah, Bahaa ; S. Gaber, Mohamed ; T. Kandil, Abdel hakim</creatorcontrib><description>The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min9100626</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>8-Hydroxyquinoline ; Acidity ; Adsorbents ; Adsorption ; adsorption kinetics ; Adsorptivity ; Aluminum oxide ; Aqueous solutions ; Bentonite ; Cation exchanging ; Cations ; Chemical composition ; Correlation coefficients ; Diatomaceous earth ; Diatomites ; Equilibrium ; Exchange capacity ; Fourier transforms ; Humic acids ; Hydroxyquinoline ; Illite ; Illites ; Ion temperature ; Ions ; Isotherms ; langmuir isotherm ; Metal concentrations ; Metal ions ; Metals ; Morphology ; Nuclear power plants ; Organic chemistry ; Permeability ; Phosphorus pentoxide ; Physicochemical processes ; Physicochemical properties ; Pollutants ; Scanning electron microscopy ; Silica ; Silicon dioxide ; Smectites ; Sodium ; Soil ; Soil permeability ; Soil pollution ; Sorbents ; Sorption ; Thorium ; Uranium ; X-ray diffraction ; X-ray fluorescence</subject><ispartof>Minerals (Basel), 2019-10, Vol.9 (10), p.626</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-8f2dc5b1e9438393e138a456bc7bab0f1851dbe4f78f8efbb67ba84158b994b23</citedby><cites>FETCH-LOGICAL-c361t-8f2dc5b1e9438393e138a456bc7bab0f1851dbe4f78f8efbb67ba84158b994b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2312011137/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2312011137?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74767,74998</link.rule.ids></links><search><creatorcontrib>A. Salah, Bahaa</creatorcontrib><creatorcontrib>S. Gaber, Mohamed</creatorcontrib><creatorcontrib>T. Kandil, Abdel hakim</creatorcontrib><title>The Removal of Uranium and Thorium from Their Aqueous Solutions by 8-Hydroxyquinoline Immobilized Bentonite</title><title>Minerals (Basel)</title><description>The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.</description><subject>8-Hydroxyquinoline</subject><subject>Acidity</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>adsorption kinetics</subject><subject>Adsorptivity</subject><subject>Aluminum oxide</subject><subject>Aqueous solutions</subject><subject>Bentonite</subject><subject>Cation exchanging</subject><subject>Cations</subject><subject>Chemical composition</subject><subject>Correlation coefficients</subject><subject>Diatomaceous earth</subject><subject>Diatomites</subject><subject>Equilibrium</subject><subject>Exchange capacity</subject><subject>Fourier transforms</subject><subject>Humic acids</subject><subject>Hydroxyquinoline</subject><subject>Illite</subject><subject>Illites</subject><subject>Ion temperature</subject><subject>Ions</subject><subject>Isotherms</subject><subject>langmuir isotherm</subject><subject>Metal concentrations</subject><subject>Metal ions</subject><subject>Metals</subject><subject>Morphology</subject><subject>Nuclear power plants</subject><subject>Organic chemistry</subject><subject>Permeability</subject><subject>Phosphorus pentoxide</subject><subject>Physicochemical processes</subject><subject>Physicochemical properties</subject><subject>Pollutants</subject><subject>Scanning electron microscopy</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Smectites</subject><subject>Sodium</subject><subject>Soil</subject><subject>Soil permeability</subject><subject>Soil pollution</subject><subject>Sorbents</subject><subject>Sorption</subject><subject>Thorium</subject><subject>Uranium</subject><subject>X-ray diffraction</subject><subject>X-ray fluorescence</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdFKwzAULaLgmHvxCwK-CdWkadrkcQ51g4GgG_gWkjZxmW3ulrbi_Hq7TdT7cs89HM69lxNFlwTfUCrwbe28IBhnSXYSDRKcs5hk9PX0Hz6PRk2zxn0JQjlLBtH7YmXQs6nhQ1UILFoG5V1XI-VLtFhB2GMboO4H4wIabzsDXYNeoOpaB75Beod4PN2VAT532855qJw3aFbXoF3lvkyJ7oxvwbvWXERnVlWNGf30YbR8uF9MpvH86XE2Gc_jgmakjblNyoJpYkRKORXU9KeqlGW6yLXS2BLOSKlNanNuubFaZz3PU8K4FiLVCR1Gs6NvCWotN8HVKuwkKCcPBIQ3qULrisrIImVECFxmhvI0Z5gzrESqLGVKU3rwujp6bQL0vzetXEMXfH--TChJMCGE5r3q-qgqAjRNMPZ3K8Fyn438y4Z-Aze4gbM</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>A. Salah, Bahaa</creator><creator>S. Gaber, Mohamed</creator><creator>T. Kandil, Abdel hakim</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20191001</creationdate><title>The Removal of Uranium and Thorium from Their Aqueous Solutions by 8-Hydroxyquinoline Immobilized Bentonite</title><author>A. Salah, Bahaa ; S. Gaber, Mohamed ; T. Kandil, Abdel hakim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-8f2dc5b1e9438393e138a456bc7bab0f1851dbe4f78f8efbb67ba84158b994b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>8-Hydroxyquinoline</topic><topic>Acidity</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>adsorption kinetics</topic><topic>Adsorptivity</topic><topic>Aluminum oxide</topic><topic>Aqueous solutions</topic><topic>Bentonite</topic><topic>Cation exchanging</topic><topic>Cations</topic><topic>Chemical composition</topic><topic>Correlation coefficients</topic><topic>Diatomaceous earth</topic><topic>Diatomites</topic><topic>Equilibrium</topic><topic>Exchange capacity</topic><topic>Fourier transforms</topic><topic>Humic acids</topic><topic>Hydroxyquinoline</topic><topic>Illite</topic><topic>Illites</topic><topic>Ion temperature</topic><topic>Ions</topic><topic>Isotherms</topic><topic>langmuir isotherm</topic><topic>Metal concentrations</topic><topic>Metal ions</topic><topic>Metals</topic><topic>Morphology</topic><topic>Nuclear power plants</topic><topic>Organic chemistry</topic><topic>Permeability</topic><topic>Phosphorus pentoxide</topic><topic>Physicochemical processes</topic><topic>Physicochemical properties</topic><topic>Pollutants</topic><topic>Scanning electron microscopy</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Smectites</topic><topic>Sodium</topic><topic>Soil</topic><topic>Soil permeability</topic><topic>Soil pollution</topic><topic>Sorbents</topic><topic>Sorption</topic><topic>Thorium</topic><topic>Uranium</topic><topic>X-ray diffraction</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>A. Salah, Bahaa</creatorcontrib><creatorcontrib>S. Gaber, Mohamed</creatorcontrib><creatorcontrib>T. Kandil, Abdel hakim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>A. Salah, Bahaa</au><au>S. Gaber, Mohamed</au><au>T. Kandil, Abdel hakim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Removal of Uranium and Thorium from Their Aqueous Solutions by 8-Hydroxyquinoline Immobilized Bentonite</atitle><jtitle>Minerals (Basel)</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>9</volume><issue>10</issue><spage>626</spage><pages>626-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min9100626</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-163X |
ispartof | Minerals (Basel), 2019-10, Vol.9 (10), p.626 |
issn | 2075-163X 2075-163X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c451990d6e384750850a94af35ab33b2 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM Collection |
subjects | 8-Hydroxyquinoline Acidity Adsorbents Adsorption adsorption kinetics Adsorptivity Aluminum oxide Aqueous solutions Bentonite Cation exchanging Cations Chemical composition Correlation coefficients Diatomaceous earth Diatomites Equilibrium Exchange capacity Fourier transforms Humic acids Hydroxyquinoline Illite Illites Ion temperature Ions Isotherms langmuir isotherm Metal concentrations Metal ions Metals Morphology Nuclear power plants Organic chemistry Permeability Phosphorus pentoxide Physicochemical processes Physicochemical properties Pollutants Scanning electron microscopy Silica Silicon dioxide Smectites Sodium Soil Soil permeability Soil pollution Sorbents Sorption Thorium Uranium X-ray diffraction X-ray fluorescence |
title | The Removal of Uranium and Thorium from Their Aqueous Solutions by 8-Hydroxyquinoline Immobilized Bentonite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Removal%20of%20Uranium%20and%20Thorium%20from%20Their%20Aqueous%20Solutions%20by%208-Hydroxyquinoline%20Immobilized%20Bentonite&rft.jtitle=Minerals%20(Basel)&rft.au=A.%20Salah,%20Bahaa&rft.date=2019-10-01&rft.volume=9&rft.issue=10&rft.spage=626&rft.pages=626-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min9100626&rft_dat=%3Cproquest_doaj_%3E2312011137%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-8f2dc5b1e9438393e138a456bc7bab0f1851dbe4f78f8efbb67ba84158b994b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312011137&rft_id=info:pmid/&rfr_iscdi=true |