Loading…

Subsystem distance after a local operator quench

A bstract We investigate the time evolution of the subsystem trace distance and Schatten distances after local operator quenches in two-dimensional conformal field theory (CFT) and in one-dimensional quantum spin chains. We focus on the case of a subsystem being an interval embedded in the infinite...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2020-02, Vol.2020 (2), p.1-33, Article 56
Main Authors: Zhang, Jiaju, Calabrese, Pasquale
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23
cites cdi_FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23
container_end_page 33
container_issue 2
container_start_page 1
container_title The journal of high energy physics
container_volume 2020
creator Zhang, Jiaju
Calabrese, Pasquale
description A bstract We investigate the time evolution of the subsystem trace distance and Schatten distances after local operator quenches in two-dimensional conformal field theory (CFT) and in one-dimensional quantum spin chains. We focus on the case of a subsystem being an interval embedded in the infinite line. The initial state is prepared by inserting a local operator in the ground state of the theory. We only consider the cases in which the inserted local operator is a primary field or a sum of several primaries. While a nonchiral primary operator can excite both left-moving and right-moving quasiparticles, a holomorphic primary operator only excites a right-moving quasiparticle and an anti-holomorphic primary operator only excites a left-moving one. The reduced density matrix (RDM) of an interval hosting a quasiparticle is orthogonal to the RDM of the interval without any quasiparticles. Moreover, the RDMs of two intervals hosting quasiparticles at different positions are also orthogonal to each other. We calculate numerically the entanglement entropy, Rényi entropy, trace distance, and Schatten distances in time-dependent states excited by different local operators in the critical Ising and XX spin chains. These results match the CFT predictions in the proper limit.
doi_str_mv 10.1007/JHEP02(2020)056
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c48de8be55ab4405a7b8025f8380a088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c48de8be55ab4405a7b8025f8380a088</doaj_id><sourcerecordid>2353917818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqUws0ZigSH0_JU4I6oKLaoEEjBbju2UVGlcbHfof49LELAw3en03u_uHkKXGG4xQDl5nM-egVwTIHADvDhCIwykygUrq-M__Sk6C2ENgDmuYITgZVeHfYh2k5k2RNVrm6kmWp-prHNadZnbWq-i89nHzvb6_RydNKoL9uK7jtHb_ex1Os-XTw-L6d0y10zQmFtaGMOprk3VsIZzpjkRlrGiBCtqoXlJC8U1ozXFQvBGUVtRoykBQzirCR2jxcA1Tq3l1rcb5ffSqVZ-DZxfSeVjqzsr00aToJZzVTMGXJW1AMIbQQUoECKxrgbW1rv0RYhy7Xa-T-dLQjmtcCnwQTUZVNq7ELxtfrZikIeI5RCxPEQsU8TJAYMjJGW_sv6X-5_lEzcke5E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353917818</pqid></control><display><type>article</type><title>Subsystem distance after a local operator quench</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Zhang, Jiaju ; Calabrese, Pasquale</creator><creatorcontrib>Zhang, Jiaju ; Calabrese, Pasquale</creatorcontrib><description>A bstract We investigate the time evolution of the subsystem trace distance and Schatten distances after local operator quenches in two-dimensional conformal field theory (CFT) and in one-dimensional quantum spin chains. We focus on the case of a subsystem being an interval embedded in the infinite line. The initial state is prepared by inserting a local operator in the ground state of the theory. We only consider the cases in which the inserted local operator is a primary field or a sum of several primaries. While a nonchiral primary operator can excite both left-moving and right-moving quasiparticles, a holomorphic primary operator only excites a right-moving quasiparticle and an anti-holomorphic primary operator only excites a left-moving one. The reduced density matrix (RDM) of an interval hosting a quasiparticle is orthogonal to the RDM of the interval without any quasiparticles. Moreover, the RDMs of two intervals hosting quasiparticles at different positions are also orthogonal to each other. We calculate numerically the entanglement entropy, Rényi entropy, trace distance, and Schatten distances in time-dependent states excited by different local operators in the critical Ising and XX spin chains. These results match the CFT predictions in the proper limit.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP02(2020)056</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chains ; Classical and Quantum Gravitation ; Conformal Field Theory ; Elementary Particles ; Entanglement ; Entropy ; Field theory ; High energy physics ; Ising model ; Lattice Integrable Models ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory ; Subsystems ; Time dependence</subject><ispartof>The journal of high energy physics, 2020-02, Vol.2020 (2), p.1-33, Article 56</ispartof><rights>The Author(s) 2021</rights><rights>Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23</citedby><cites>FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23</cites><orcidid>0000-0002-7957-3156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2353917818/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2353917818?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Zhang, Jiaju</creatorcontrib><creatorcontrib>Calabrese, Pasquale</creatorcontrib><title>Subsystem distance after a local operator quench</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We investigate the time evolution of the subsystem trace distance and Schatten distances after local operator quenches in two-dimensional conformal field theory (CFT) and in one-dimensional quantum spin chains. We focus on the case of a subsystem being an interval embedded in the infinite line. The initial state is prepared by inserting a local operator in the ground state of the theory. We only consider the cases in which the inserted local operator is a primary field or a sum of several primaries. While a nonchiral primary operator can excite both left-moving and right-moving quasiparticles, a holomorphic primary operator only excites a right-moving quasiparticle and an anti-holomorphic primary operator only excites a left-moving one. The reduced density matrix (RDM) of an interval hosting a quasiparticle is orthogonal to the RDM of the interval without any quasiparticles. Moreover, the RDMs of two intervals hosting quasiparticles at different positions are also orthogonal to each other. We calculate numerically the entanglement entropy, Rényi entropy, trace distance, and Schatten distances in time-dependent states excited by different local operators in the critical Ising and XX spin chains. These results match the CFT predictions in the proper limit.</description><subject>Chains</subject><subject>Classical and Quantum Gravitation</subject><subject>Conformal Field Theory</subject><subject>Elementary Particles</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Field theory</subject><subject>High energy physics</subject><subject>Ising model</subject><subject>Lattice Integrable Models</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><subject>Subsystems</subject><subject>Time dependence</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kL1PwzAQxS0EEqUws0ZigSH0_JU4I6oKLaoEEjBbju2UVGlcbHfof49LELAw3en03u_uHkKXGG4xQDl5nM-egVwTIHADvDhCIwykygUrq-M__Sk6C2ENgDmuYITgZVeHfYh2k5k2RNVrm6kmWp-prHNadZnbWq-i89nHzvb6_RydNKoL9uK7jtHb_ex1Os-XTw-L6d0y10zQmFtaGMOprk3VsIZzpjkRlrGiBCtqoXlJC8U1ozXFQvBGUVtRoykBQzirCR2jxcA1Tq3l1rcb5ffSqVZ-DZxfSeVjqzsr00aToJZzVTMGXJW1AMIbQQUoECKxrgbW1rv0RYhy7Xa-T-dLQjmtcCnwQTUZVNq7ELxtfrZikIeI5RCxPEQsU8TJAYMjJGW_sv6X-5_lEzcke5E</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zhang, Jiaju</creator><creator>Calabrese, Pasquale</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7957-3156</orcidid></search><sort><creationdate>20200201</creationdate><title>Subsystem distance after a local operator quench</title><author>Zhang, Jiaju ; Calabrese, Pasquale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chains</topic><topic>Classical and Quantum Gravitation</topic><topic>Conformal Field Theory</topic><topic>Elementary Particles</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Field theory</topic><topic>High energy physics</topic><topic>Ising model</topic><topic>Lattice Integrable Models</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><topic>Subsystems</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiaju</creatorcontrib><creatorcontrib>Calabrese, Pasquale</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiaju</au><au>Calabrese, Pasquale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subsystem distance after a local operator quench</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>2020</volume><issue>2</issue><spage>1</spage><epage>33</epage><pages>1-33</pages><artnum>56</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We investigate the time evolution of the subsystem trace distance and Schatten distances after local operator quenches in two-dimensional conformal field theory (CFT) and in one-dimensional quantum spin chains. We focus on the case of a subsystem being an interval embedded in the infinite line. The initial state is prepared by inserting a local operator in the ground state of the theory. We only consider the cases in which the inserted local operator is a primary field or a sum of several primaries. While a nonchiral primary operator can excite both left-moving and right-moving quasiparticles, a holomorphic primary operator only excites a right-moving quasiparticle and an anti-holomorphic primary operator only excites a left-moving one. The reduced density matrix (RDM) of an interval hosting a quasiparticle is orthogonal to the RDM of the interval without any quasiparticles. Moreover, the RDMs of two intervals hosting quasiparticles at different positions are also orthogonal to each other. We calculate numerically the entanglement entropy, Rényi entropy, trace distance, and Schatten distances in time-dependent states excited by different local operators in the critical Ising and XX spin chains. These results match the CFT predictions in the proper limit.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP02(2020)056</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-7957-3156</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2020-02, Vol.2020 (2), p.1-33, Article 56
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c48de8be55ab4405a7b8025f8380a088
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Chains
Classical and Quantum Gravitation
Conformal Field Theory
Elementary Particles
Entanglement
Entropy
Field theory
High energy physics
Ising model
Lattice Integrable Models
Mathematical analysis
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Subsystems
Time dependence
title Subsystem distance after a local operator quench
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subsystem%20distance%20after%20a%20local%20operator%20quench&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Zhang,%20Jiaju&rft.date=2020-02-01&rft.volume=2020&rft.issue=2&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.artnum=56&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP02(2020)056&rft_dat=%3Cproquest_doaj_%3E2353917818%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2353917818&rft_id=info:pmid/&rfr_iscdi=true