Loading…
Subsystem distance after a local operator quench
A bstract We investigate the time evolution of the subsystem trace distance and Schatten distances after local operator quenches in two-dimensional conformal field theory (CFT) and in one-dimensional quantum spin chains. We focus on the case of a subsystem being an interval embedded in the infinite...
Saved in:
Published in: | The journal of high energy physics 2020-02, Vol.2020 (2), p.1-33, Article 56 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23 |
container_end_page | 33 |
container_issue | 2 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2020 |
creator | Zhang, Jiaju Calabrese, Pasquale |
description | A
bstract
We investigate the time evolution of the subsystem trace distance and Schatten distances after local operator quenches in two-dimensional conformal field theory (CFT) and in one-dimensional quantum spin chains. We focus on the case of a subsystem being an interval embedded in the infinite line. The initial state is prepared by inserting a local operator in the ground state of the theory. We only consider the cases in which the inserted local operator is a primary field or a sum of several primaries. While a nonchiral primary operator can excite both left-moving and right-moving quasiparticles, a holomorphic primary operator only excites a right-moving quasiparticle and an anti-holomorphic primary operator only excites a left-moving one. The reduced density matrix (RDM) of an interval hosting a quasiparticle is orthogonal to the RDM of the interval without any quasiparticles. Moreover, the RDMs of two intervals hosting quasiparticles at different positions are also orthogonal to each other. We calculate numerically the entanglement entropy, Rényi entropy, trace distance, and Schatten distances in time-dependent states excited by different local operators in the critical Ising and XX spin chains. These results match the CFT predictions in the proper limit. |
doi_str_mv | 10.1007/JHEP02(2020)056 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c48de8be55ab4405a7b8025f8380a088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c48de8be55ab4405a7b8025f8380a088</doaj_id><sourcerecordid>2353917818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqUws0ZigSH0_JU4I6oKLaoEEjBbju2UVGlcbHfof49LELAw3en03u_uHkKXGG4xQDl5nM-egVwTIHADvDhCIwykygUrq-M__Sk6C2ENgDmuYITgZVeHfYh2k5k2RNVrm6kmWp-prHNadZnbWq-i89nHzvb6_RydNKoL9uK7jtHb_ex1Os-XTw-L6d0y10zQmFtaGMOprk3VsIZzpjkRlrGiBCtqoXlJC8U1ozXFQvBGUVtRoykBQzirCR2jxcA1Tq3l1rcb5ffSqVZ-DZxfSeVjqzsr00aToJZzVTMGXJW1AMIbQQUoECKxrgbW1rv0RYhy7Xa-T-dLQjmtcCnwQTUZVNq7ELxtfrZikIeI5RCxPEQsU8TJAYMjJGW_sv6X-5_lEzcke5E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353917818</pqid></control><display><type>article</type><title>Subsystem distance after a local operator quench</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Zhang, Jiaju ; Calabrese, Pasquale</creator><creatorcontrib>Zhang, Jiaju ; Calabrese, Pasquale</creatorcontrib><description>A
bstract
We investigate the time evolution of the subsystem trace distance and Schatten distances after local operator quenches in two-dimensional conformal field theory (CFT) and in one-dimensional quantum spin chains. We focus on the case of a subsystem being an interval embedded in the infinite line. The initial state is prepared by inserting a local operator in the ground state of the theory. We only consider the cases in which the inserted local operator is a primary field or a sum of several primaries. While a nonchiral primary operator can excite both left-moving and right-moving quasiparticles, a holomorphic primary operator only excites a right-moving quasiparticle and an anti-holomorphic primary operator only excites a left-moving one. The reduced density matrix (RDM) of an interval hosting a quasiparticle is orthogonal to the RDM of the interval without any quasiparticles. Moreover, the RDMs of two intervals hosting quasiparticles at different positions are also orthogonal to each other. We calculate numerically the entanglement entropy, Rényi entropy, trace distance, and Schatten distances in time-dependent states excited by different local operators in the critical Ising and XX spin chains. These results match the CFT predictions in the proper limit.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP02(2020)056</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chains ; Classical and Quantum Gravitation ; Conformal Field Theory ; Elementary Particles ; Entanglement ; Entropy ; Field theory ; High energy physics ; Ising model ; Lattice Integrable Models ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory ; Subsystems ; Time dependence</subject><ispartof>The journal of high energy physics, 2020-02, Vol.2020 (2), p.1-33, Article 56</ispartof><rights>The Author(s) 2021</rights><rights>Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23</citedby><cites>FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23</cites><orcidid>0000-0002-7957-3156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2353917818/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2353917818?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Zhang, Jiaju</creatorcontrib><creatorcontrib>Calabrese, Pasquale</creatorcontrib><title>Subsystem distance after a local operator quench</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We investigate the time evolution of the subsystem trace distance and Schatten distances after local operator quenches in two-dimensional conformal field theory (CFT) and in one-dimensional quantum spin chains. We focus on the case of a subsystem being an interval embedded in the infinite line. The initial state is prepared by inserting a local operator in the ground state of the theory. We only consider the cases in which the inserted local operator is a primary field or a sum of several primaries. While a nonchiral primary operator can excite both left-moving and right-moving quasiparticles, a holomorphic primary operator only excites a right-moving quasiparticle and an anti-holomorphic primary operator only excites a left-moving one. The reduced density matrix (RDM) of an interval hosting a quasiparticle is orthogonal to the RDM of the interval without any quasiparticles. Moreover, the RDMs of two intervals hosting quasiparticles at different positions are also orthogonal to each other. We calculate numerically the entanglement entropy, Rényi entropy, trace distance, and Schatten distances in time-dependent states excited by different local operators in the critical Ising and XX spin chains. These results match the CFT predictions in the proper limit.</description><subject>Chains</subject><subject>Classical and Quantum Gravitation</subject><subject>Conformal Field Theory</subject><subject>Elementary Particles</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Field theory</subject><subject>High energy physics</subject><subject>Ising model</subject><subject>Lattice Integrable Models</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><subject>Subsystems</subject><subject>Time dependence</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kL1PwzAQxS0EEqUws0ZigSH0_JU4I6oKLaoEEjBbju2UVGlcbHfof49LELAw3en03u_uHkKXGG4xQDl5nM-egVwTIHADvDhCIwykygUrq-M__Sk6C2ENgDmuYITgZVeHfYh2k5k2RNVrm6kmWp-prHNadZnbWq-i89nHzvb6_RydNKoL9uK7jtHb_ex1Os-XTw-L6d0y10zQmFtaGMOprk3VsIZzpjkRlrGiBCtqoXlJC8U1ozXFQvBGUVtRoykBQzirCR2jxcA1Tq3l1rcb5ffSqVZ-DZxfSeVjqzsr00aToJZzVTMGXJW1AMIbQQUoECKxrgbW1rv0RYhy7Xa-T-dLQjmtcCnwQTUZVNq7ELxtfrZikIeI5RCxPEQsU8TJAYMjJGW_sv6X-5_lEzcke5E</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zhang, Jiaju</creator><creator>Calabrese, Pasquale</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7957-3156</orcidid></search><sort><creationdate>20200201</creationdate><title>Subsystem distance after a local operator quench</title><author>Zhang, Jiaju ; Calabrese, Pasquale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chains</topic><topic>Classical and Quantum Gravitation</topic><topic>Conformal Field Theory</topic><topic>Elementary Particles</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Field theory</topic><topic>High energy physics</topic><topic>Ising model</topic><topic>Lattice Integrable Models</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><topic>Subsystems</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiaju</creatorcontrib><creatorcontrib>Calabrese, Pasquale</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiaju</au><au>Calabrese, Pasquale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subsystem distance after a local operator quench</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>2020</volume><issue>2</issue><spage>1</spage><epage>33</epage><pages>1-33</pages><artnum>56</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
We investigate the time evolution of the subsystem trace distance and Schatten distances after local operator quenches in two-dimensional conformal field theory (CFT) and in one-dimensional quantum spin chains. We focus on the case of a subsystem being an interval embedded in the infinite line. The initial state is prepared by inserting a local operator in the ground state of the theory. We only consider the cases in which the inserted local operator is a primary field or a sum of several primaries. While a nonchiral primary operator can excite both left-moving and right-moving quasiparticles, a holomorphic primary operator only excites a right-moving quasiparticle and an anti-holomorphic primary operator only excites a left-moving one. The reduced density matrix (RDM) of an interval hosting a quasiparticle is orthogonal to the RDM of the interval without any quasiparticles. Moreover, the RDMs of two intervals hosting quasiparticles at different positions are also orthogonal to each other. We calculate numerically the entanglement entropy, Rényi entropy, trace distance, and Schatten distances in time-dependent states excited by different local operators in the critical Ising and XX spin chains. These results match the CFT predictions in the proper limit.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP02(2020)056</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-7957-3156</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2020-02, Vol.2020 (2), p.1-33, Article 56 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c48de8be55ab4405a7b8025f8380a088 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Chains Classical and Quantum Gravitation Conformal Field Theory Elementary Particles Entanglement Entropy Field theory High energy physics Ising model Lattice Integrable Models Mathematical analysis Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Subsystems Time dependence |
title | Subsystem distance after a local operator quench |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subsystem%20distance%20after%20a%20local%20operator%20quench&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Zhang,%20Jiaju&rft.date=2020-02-01&rft.volume=2020&rft.issue=2&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.artnum=56&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP02(2020)056&rft_dat=%3Cproquest_doaj_%3E2353917818%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-e36dd53cbd9f4f554c528e44670e8b8c5736a5c43b31885fa3e93dc320d254b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2353917818&rft_id=info:pmid/&rfr_iscdi=true |