Loading…

A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries

Reactive negative electrodes like lithium (Li) suffer serious chemical and electrochemical corrosion by electrolytes during battery storage and operation, resulting in rapidly deteriorated cyclability and short lifespans of batteries. Li corrosion supposedly relates to the features of solid-electrol...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-12, Vol.14 (1), p.8269-8269, Article 8269
Main Authors: Jin, Chengbin, Huang, Yiyu, Li, Lanhang, Wei, Guoying, Li, Hongyan, Shang, Qiyao, Ju, Zhijin, Lu, Gongxun, Zheng, Jiale, Sheng, Ouwei, Tao, Xinyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-61d93b091e71803c1b06f67ab61029dea66e8a66fccfdc8dcc8f76acd16d7fd03
cites cdi_FETCH-LOGICAL-c541t-61d93b091e71803c1b06f67ab61029dea66e8a66fccfdc8dcc8f76acd16d7fd03
container_end_page 8269
container_issue 1
container_start_page 8269
container_title Nature communications
container_volume 14
creator Jin, Chengbin
Huang, Yiyu
Li, Lanhang
Wei, Guoying
Li, Hongyan
Shang, Qiyao
Ju, Zhijin
Lu, Gongxun
Zheng, Jiale
Sheng, Ouwei
Tao, Xinyong
description Reactive negative electrodes like lithium (Li) suffer serious chemical and electrochemical corrosion by electrolytes during battery storage and operation, resulting in rapidly deteriorated cyclability and short lifespans of batteries. Li corrosion supposedly relates to the features of solid-electrolyte-interphase (SEI). Herein, we quantitatively monitor the Li corrosion and SEI progression (e.g., dissolution, reformation) in typical electrolytes through devised electrochemical tools and cryo-electron microscopy. The continuous Li corrosion is validated to be positively correlated with SEI dissolution. More importantly, an anti-corrosion and interface-stabilizing artificial passivation layer comprising low-solubility polymer and metal fluoride is designed. Prolonged operations of Li symmetric cells and Li | |LiFePO 4 cells with reduced Li corrosion by ~74% are achieved (0.66 versus 2.5 μAh h −1 ). The success can further be extended to ampere-hour-scale pouch cells. This work uncovers the SEI dissolution and its correlation with Li corrosion, enabling the durable operation of Li metal batteries by reducing the Li loss. Lithium metal electrodes suffer from both chemical and electrochemical corrosion during battery storage and operation. Here, the authors show that lithium corrosion is due to dissolution of the solid-electrolyte interphase and suppress this by utilizing a multifunctional passivation layer.
doi_str_mv 10.1038/s41467-023-44161-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c4905d4c8f744a8f9c4933c2214f35bc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c4905d4c8f744a8f9c4933c2214f35bc</doaj_id><sourcerecordid>2901277326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-61d93b091e71803c1b06f67ab61029dea66e8a66fccfdc8dcc8f76acd16d7fd03</originalsourceid><addsrcrecordid>eNp9ks9vFSEQxzdGY5vaf8CD2cSLl1UGeLCcTNP4o0kTL3omLMy-x5NdKrBN-t_L69Zn60EO_Jj5zocZmKZ5DeQ9ENZ_yBy4kB2hrOMcBHTyWXNKCYcOJGXPH-1PmvOc96QOpqDn_GVzwnqiqFT8tNEXrY0pxezj3Pp55wdf_Lxtg7nD1JbYFmN_BmzLDlufEt5iyn6ohuDLzi9TG2LONfB4nrCY0A6mFEwe86vmxWhCxvOH9az58fnT98uv3fW3L1eXF9ed3XAonQCn2EAUoISeMAsDEaOQZhBAqHJohMC-TqO1o7O9s7YfpTDWgXBydISdNVcr10Wz1zfJTybd6Wi8vjfEtNUmFW8DassV2Th-IHBu-lFVA2OWUuAj2wy2sj6urJtlmNBZnEsy4Qn0qWf2O72NtxqIBMVIXwnvHggp_lowFz35bDEEM2NcsqaqViUoYYfE3_4j3cclzfWtDiqgUjIqqoquKlu_Kiccj9kA0Yd-0Gs_6NoP-r4ftKxBbx7XcQz58_tVwFZBrq55i-nv3f_B_gZRG8H4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901277326</pqid></control><display><type>article</type><title>A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jin, Chengbin ; Huang, Yiyu ; Li, Lanhang ; Wei, Guoying ; Li, Hongyan ; Shang, Qiyao ; Ju, Zhijin ; Lu, Gongxun ; Zheng, Jiale ; Sheng, Ouwei ; Tao, Xinyong</creator><creatorcontrib>Jin, Chengbin ; Huang, Yiyu ; Li, Lanhang ; Wei, Guoying ; Li, Hongyan ; Shang, Qiyao ; Ju, Zhijin ; Lu, Gongxun ; Zheng, Jiale ; Sheng, Ouwei ; Tao, Xinyong</creatorcontrib><description>Reactive negative electrodes like lithium (Li) suffer serious chemical and electrochemical corrosion by electrolytes during battery storage and operation, resulting in rapidly deteriorated cyclability and short lifespans of batteries. Li corrosion supposedly relates to the features of solid-electrolyte-interphase (SEI). Herein, we quantitatively monitor the Li corrosion and SEI progression (e.g., dissolution, reformation) in typical electrolytes through devised electrochemical tools and cryo-electron microscopy. The continuous Li corrosion is validated to be positively correlated with SEI dissolution. More importantly, an anti-corrosion and interface-stabilizing artificial passivation layer comprising low-solubility polymer and metal fluoride is designed. Prolonged operations of Li symmetric cells and Li | |LiFePO 4 cells with reduced Li corrosion by ~74% are achieved (0.66 versus 2.5 μAh h −1 ). The success can further be extended to ampere-hour-scale pouch cells. This work uncovers the SEI dissolution and its correlation with Li corrosion, enabling the durable operation of Li metal batteries by reducing the Li loss. Lithium metal electrodes suffer from both chemical and electrochemical corrosion during battery storage and operation. Here, the authors show that lithium corrosion is due to dissolution of the solid-electrolyte interphase and suppress this by utilizing a multifunctional passivation layer.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-44161-7</identifier><identifier>PMID: 38092794</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 147/135 ; 147/143 ; 639/301/299/891 ; 639/638/161/891 ; Corrosion ; Corrosion prevention ; Dissolution ; Electrochemical corrosion ; Electrochemistry ; Electrodes ; Electrolytes ; Electrolytic cells ; Electron microscopy ; Energy storage ; Humanities and Social Sciences ; Interphase ; Lithium ; Lithium batteries ; Metal fluorides ; Metals ; multidisciplinary ; Passivity ; Polymers ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2023-12, Vol.14 (1), p.8269-8269, Article 8269</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-61d93b091e71803c1b06f67ab61029dea66e8a66fccfdc8dcc8f76acd16d7fd03</citedby><cites>FETCH-LOGICAL-c541t-61d93b091e71803c1b06f67ab61029dea66e8a66fccfdc8dcc8f76acd16d7fd03</cites><orcidid>0000-0002-0304-8814 ; 0000-0003-4084-7743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2901277326/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2901277326?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,44581,53782,53784,74887</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38092794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Chengbin</creatorcontrib><creatorcontrib>Huang, Yiyu</creatorcontrib><creatorcontrib>Li, Lanhang</creatorcontrib><creatorcontrib>Wei, Guoying</creatorcontrib><creatorcontrib>Li, Hongyan</creatorcontrib><creatorcontrib>Shang, Qiyao</creatorcontrib><creatorcontrib>Ju, Zhijin</creatorcontrib><creatorcontrib>Lu, Gongxun</creatorcontrib><creatorcontrib>Zheng, Jiale</creatorcontrib><creatorcontrib>Sheng, Ouwei</creatorcontrib><creatorcontrib>Tao, Xinyong</creatorcontrib><title>A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Reactive negative electrodes like lithium (Li) suffer serious chemical and electrochemical corrosion by electrolytes during battery storage and operation, resulting in rapidly deteriorated cyclability and short lifespans of batteries. Li corrosion supposedly relates to the features of solid-electrolyte-interphase (SEI). Herein, we quantitatively monitor the Li corrosion and SEI progression (e.g., dissolution, reformation) in typical electrolytes through devised electrochemical tools and cryo-electron microscopy. The continuous Li corrosion is validated to be positively correlated with SEI dissolution. More importantly, an anti-corrosion and interface-stabilizing artificial passivation layer comprising low-solubility polymer and metal fluoride is designed. Prolonged operations of Li symmetric cells and Li | |LiFePO 4 cells with reduced Li corrosion by ~74% are achieved (0.66 versus 2.5 μAh h −1 ). The success can further be extended to ampere-hour-scale pouch cells. This work uncovers the SEI dissolution and its correlation with Li corrosion, enabling the durable operation of Li metal batteries by reducing the Li loss. Lithium metal electrodes suffer from both chemical and electrochemical corrosion during battery storage and operation. Here, the authors show that lithium corrosion is due to dissolution of the solid-electrolyte interphase and suppress this by utilizing a multifunctional passivation layer.</description><subject>140/146</subject><subject>147/135</subject><subject>147/143</subject><subject>639/301/299/891</subject><subject>639/638/161/891</subject><subject>Corrosion</subject><subject>Corrosion prevention</subject><subject>Dissolution</subject><subject>Electrochemical corrosion</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Electron microscopy</subject><subject>Energy storage</subject><subject>Humanities and Social Sciences</subject><subject>Interphase</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Metal fluorides</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Passivity</subject><subject>Polymers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9vFSEQxzdGY5vaf8CD2cSLl1UGeLCcTNP4o0kTL3omLMy-x5NdKrBN-t_L69Zn60EO_Jj5zocZmKZ5DeQ9ENZ_yBy4kB2hrOMcBHTyWXNKCYcOJGXPH-1PmvOc96QOpqDn_GVzwnqiqFT8tNEXrY0pxezj3Pp55wdf_Lxtg7nD1JbYFmN_BmzLDlufEt5iyn6ohuDLzi9TG2LONfB4nrCY0A6mFEwe86vmxWhCxvOH9az58fnT98uv3fW3L1eXF9ed3XAonQCn2EAUoISeMAsDEaOQZhBAqHJohMC-TqO1o7O9s7YfpTDWgXBydISdNVcr10Wz1zfJTybd6Wi8vjfEtNUmFW8DassV2Th-IHBu-lFVA2OWUuAj2wy2sj6urJtlmNBZnEsy4Qn0qWf2O72NtxqIBMVIXwnvHggp_lowFz35bDEEM2NcsqaqViUoYYfE3_4j3cclzfWtDiqgUjIqqoquKlu_Kiccj9kA0Yd-0Gs_6NoP-r4ftKxBbx7XcQz58_tVwFZBrq55i-nv3f_B_gZRG8H4</recordid><startdate>20231213</startdate><enddate>20231213</enddate><creator>Jin, Chengbin</creator><creator>Huang, Yiyu</creator><creator>Li, Lanhang</creator><creator>Wei, Guoying</creator><creator>Li, Hongyan</creator><creator>Shang, Qiyao</creator><creator>Ju, Zhijin</creator><creator>Lu, Gongxun</creator><creator>Zheng, Jiale</creator><creator>Sheng, Ouwei</creator><creator>Tao, Xinyong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0304-8814</orcidid><orcidid>https://orcid.org/0000-0003-4084-7743</orcidid></search><sort><creationdate>20231213</creationdate><title>A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries</title><author>Jin, Chengbin ; Huang, Yiyu ; Li, Lanhang ; Wei, Guoying ; Li, Hongyan ; Shang, Qiyao ; Ju, Zhijin ; Lu, Gongxun ; Zheng, Jiale ; Sheng, Ouwei ; Tao, Xinyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-61d93b091e71803c1b06f67ab61029dea66e8a66fccfdc8dcc8f76acd16d7fd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>140/146</topic><topic>147/135</topic><topic>147/143</topic><topic>639/301/299/891</topic><topic>639/638/161/891</topic><topic>Corrosion</topic><topic>Corrosion prevention</topic><topic>Dissolution</topic><topic>Electrochemical corrosion</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Electron microscopy</topic><topic>Energy storage</topic><topic>Humanities and Social Sciences</topic><topic>Interphase</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Metal fluorides</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Passivity</topic><topic>Polymers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Chengbin</creatorcontrib><creatorcontrib>Huang, Yiyu</creatorcontrib><creatorcontrib>Li, Lanhang</creatorcontrib><creatorcontrib>Wei, Guoying</creatorcontrib><creatorcontrib>Li, Hongyan</creatorcontrib><creatorcontrib>Shang, Qiyao</creatorcontrib><creatorcontrib>Ju, Zhijin</creatorcontrib><creatorcontrib>Lu, Gongxun</creatorcontrib><creatorcontrib>Zheng, Jiale</creatorcontrib><creatorcontrib>Sheng, Ouwei</creatorcontrib><creatorcontrib>Tao, Xinyong</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Chengbin</au><au>Huang, Yiyu</au><au>Li, Lanhang</au><au>Wei, Guoying</au><au>Li, Hongyan</au><au>Shang, Qiyao</au><au>Ju, Zhijin</au><au>Lu, Gongxun</au><au>Zheng, Jiale</au><au>Sheng, Ouwei</au><au>Tao, Xinyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-12-13</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>8269</spage><epage>8269</epage><pages>8269-8269</pages><artnum>8269</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Reactive negative electrodes like lithium (Li) suffer serious chemical and electrochemical corrosion by electrolytes during battery storage and operation, resulting in rapidly deteriorated cyclability and short lifespans of batteries. Li corrosion supposedly relates to the features of solid-electrolyte-interphase (SEI). Herein, we quantitatively monitor the Li corrosion and SEI progression (e.g., dissolution, reformation) in typical electrolytes through devised electrochemical tools and cryo-electron microscopy. The continuous Li corrosion is validated to be positively correlated with SEI dissolution. More importantly, an anti-corrosion and interface-stabilizing artificial passivation layer comprising low-solubility polymer and metal fluoride is designed. Prolonged operations of Li symmetric cells and Li | |LiFePO 4 cells with reduced Li corrosion by ~74% are achieved (0.66 versus 2.5 μAh h −1 ). The success can further be extended to ampere-hour-scale pouch cells. This work uncovers the SEI dissolution and its correlation with Li corrosion, enabling the durable operation of Li metal batteries by reducing the Li loss. Lithium metal electrodes suffer from both chemical and electrochemical corrosion during battery storage and operation. Here, the authors show that lithium corrosion is due to dissolution of the solid-electrolyte interphase and suppress this by utilizing a multifunctional passivation layer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38092794</pmid><doi>10.1038/s41467-023-44161-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0304-8814</orcidid><orcidid>https://orcid.org/0000-0003-4084-7743</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-12, Vol.14 (1), p.8269-8269, Article 8269
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c4905d4c8f744a8f9c4933c2214f35bc
source PubMed (Medline); Publicly Available Content (ProQuest); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/146
147/135
147/143
639/301/299/891
639/638/161/891
Corrosion
Corrosion prevention
Dissolution
Electrochemical corrosion
Electrochemistry
Electrodes
Electrolytes
Electrolytic cells
Electron microscopy
Energy storage
Humanities and Social Sciences
Interphase
Lithium
Lithium batteries
Metal fluorides
Metals
multidisciplinary
Passivity
Polymers
Science
Science (multidisciplinary)
title A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20corrosion%20inhibiting%20layer%20to%20tackle%20the%20irreversible%20lithium%20loss%20in%20lithium%20metal%20batteries&rft.jtitle=Nature%20communications&rft.au=Jin,%20Chengbin&rft.date=2023-12-13&rft.volume=14&rft.issue=1&rft.spage=8269&rft.epage=8269&rft.pages=8269-8269&rft.artnum=8269&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-44161-7&rft_dat=%3Cproquest_doaj_%3E2901277326%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-61d93b091e71803c1b06f67ab61029dea66e8a66fccfdc8dcc8f76acd16d7fd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901277326&rft_id=info:pmid/38092794&rfr_iscdi=true