Loading…
Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants
The COVID-19 pandemic and the high numbers of infected individuals pose major challenges for public health departments. To overcome these challenges, the health department in Cologne has developed a software called DiKoMa. This software offers the possibility to track contact and index persons, but...
Saved in:
Published in: | Frontiers in public health 2022-11, Vol.10, p.1030939-1030939 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c419t-32f0eae3d8b32ade231e5c8fbc26d0a202ccc86bbec198025792617551f2729c3 |
container_end_page | 1030939 |
container_issue | |
container_start_page | 1030939 |
container_title | Frontiers in public health |
container_volume | 10 |
creator | Grüne, Barbara Kugler, Sabine Ginzel, Sebastian Wolff, Anna Buess, Michael Kossow, Annelene Küfer-Weiß, Annika Rüping, Stefan Neuhann, Florian |
description | The COVID-19 pandemic and the high numbers of infected individuals pose major challenges for public health departments. To overcome these challenges, the health department in Cologne has developed a software called DiKoMa. This software offers the possibility to track contact and index persons, but also provides a digital symptom diary. In this work, the question of whether these can also be used for diagnostic purposes will be investigated. Machine learning makes it possible to identify infections based on early symptom profiles and to distinguish between the predominant dominant variants. Focusing on the occurrence of the symptoms in the first week, a decision tree is trained for the differentiation between contact and index persons and the prevailing dominant variants (Wildtype, Alpha, Delta, and Omicron). The model is evaluated, using sex- and age-stratified cross-validation and validated by symptom profiles of the first 6 days. The variants achieve an AUC-ROC from 0.89 for Omicron and 0.6 for Alpha. No significant differences are observed for the results of the validation set (Alpha 0.63 and Omicron 0.87). The evaluation of symptom combinations using artificial intelligence can determine the individual risk for the presence of a COVID-19 infection, allows assignment to virus variants, and can contribute to the management of epidemics and pandemics on a national and international level. It can help to reduce the number of specific tests in times of low labor capacity and could help to early identify new virus variants. |
doi_str_mv | 10.3389/fpubh.2022.1030939 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c4a8cf715c384c09b3323dac7e10ecdc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c4a8cf715c384c09b3323dac7e10ecdc</doaj_id><sourcerecordid>2744667996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-32f0eae3d8b32ade231e5c8fbc26d0a202ccc86bbec198025792617551f2729c3</originalsourceid><addsrcrecordid>eNpVkU1rGzEQhpfQkIQkf6CHssde1pVG-6VLIZh-BAKFuu1VaEcjR2F35UqyQ_595dgNCQhpNHrnkUZvUbznbCFELz_ZzXa4XwADWHAmmBTypLgAkG0FTdu8exWfF9cxPjDGsq5mwM-Kc9HWDci6vijm1dO0SX4qjdPBUSx1HnmzdkmPZfJ-P5WGEmEqVzc_V9XS_6mgdLPNGefnLJ9NLrCWAs3J6UTlQOmRaC43gXZ6zNlyl-F6TvGqOLV6jHR9XC-L31-__Fp-r-5-fLtd3txVWHOZKgGWkSZh-kGANgSCU4O9HRBaw3TuGhH7dhgIuewZNJ2ElndNwy10IFFcFrcHrvH6QW2Cm3R4Ul479ZzwYa10SA5HUljrHm3HGxR9jUwOQoAwGjvijNDsWZ8PrPzjExnM_QQ9voG-PZndvVr7nZId4z10GfDxCAj-75ZiUpOLSOOoZ_LbqKCr67btpGyzFA5SDD7GQPblGs7U3nf17Lva-66OvueiD68f-FLy32XxD9tUrC0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2744667996</pqid></control><display><type>article</type><title>Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants</title><source>PubMed (Medline)</source><creator>Grüne, Barbara ; Kugler, Sabine ; Ginzel, Sebastian ; Wolff, Anna ; Buess, Michael ; Kossow, Annelene ; Küfer-Weiß, Annika ; Rüping, Stefan ; Neuhann, Florian</creator><creatorcontrib>Grüne, Barbara ; Kugler, Sabine ; Ginzel, Sebastian ; Wolff, Anna ; Buess, Michael ; Kossow, Annelene ; Küfer-Weiß, Annika ; Rüping, Stefan ; Neuhann, Florian</creatorcontrib><description>The COVID-19 pandemic and the high numbers of infected individuals pose major challenges for public health departments. To overcome these challenges, the health department in Cologne has developed a software called DiKoMa. This software offers the possibility to track contact and index persons, but also provides a digital symptom diary. In this work, the question of whether these can also be used for diagnostic purposes will be investigated. Machine learning makes it possible to identify infections based on early symptom profiles and to distinguish between the predominant dominant variants. Focusing on the occurrence of the symptoms in the first week, a decision tree is trained for the differentiation between contact and index persons and the prevailing dominant variants (Wildtype, Alpha, Delta, and Omicron). The model is evaluated, using sex- and age-stratified cross-validation and validated by symptom profiles of the first 6 days. The variants achieve an AUC-ROC from 0.89 for Omicron and 0.6 for Alpha. No significant differences are observed for the results of the validation set (Alpha 0.63 and Omicron 0.87). The evaluation of symptom combinations using artificial intelligence can determine the individual risk for the presence of a COVID-19 infection, allows assignment to virus variants, and can contribute to the management of epidemics and pandemics on a national and international level. It can help to reduce the number of specific tests in times of low labor capacity and could help to early identify new virus variants.</description><identifier>ISSN: 2296-2565</identifier><identifier>EISSN: 2296-2565</identifier><identifier>DOI: 10.3389/fpubh.2022.1030939</identifier><identifier>PMID: 36452944</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Artificial Intelligence ; classification ; COVID-19 - diagnosis ; COVID-19 - epidemiology ; digital symptom diaries ; Humans ; Infant, Newborn ; machine learning ; Pandemics ; prevalent virus variants ; Public Health ; SARS-CoV-2 ; symptom combinations</subject><ispartof>Frontiers in public health, 2022-11, Vol.10, p.1030939-1030939</ispartof><rights>Copyright © 2022 Grüne, Kugler, Ginzel, Wolff, Buess, Kossow, Küfer-Weiß, Rüping and Neuhann.</rights><rights>Copyright © 2022 Grüne, Kugler, Ginzel, Wolff, Buess, Kossow, Küfer-Weiß, Rüping and Neuhann. 2022 Grüne, Kugler, Ginzel, Wolff, Buess, Kossow, Küfer-Weiß, Rüping and Neuhann</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c419t-32f0eae3d8b32ade231e5c8fbc26d0a202ccc86bbec198025792617551f2729c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701827/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701827/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36452944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grüne, Barbara</creatorcontrib><creatorcontrib>Kugler, Sabine</creatorcontrib><creatorcontrib>Ginzel, Sebastian</creatorcontrib><creatorcontrib>Wolff, Anna</creatorcontrib><creatorcontrib>Buess, Michael</creatorcontrib><creatorcontrib>Kossow, Annelene</creatorcontrib><creatorcontrib>Küfer-Weiß, Annika</creatorcontrib><creatorcontrib>Rüping, Stefan</creatorcontrib><creatorcontrib>Neuhann, Florian</creatorcontrib><title>Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants</title><title>Frontiers in public health</title><addtitle>Front Public Health</addtitle><description>The COVID-19 pandemic and the high numbers of infected individuals pose major challenges for public health departments. To overcome these challenges, the health department in Cologne has developed a software called DiKoMa. This software offers the possibility to track contact and index persons, but also provides a digital symptom diary. In this work, the question of whether these can also be used for diagnostic purposes will be investigated. Machine learning makes it possible to identify infections based on early symptom profiles and to distinguish between the predominant dominant variants. Focusing on the occurrence of the symptoms in the first week, a decision tree is trained for the differentiation between contact and index persons and the prevailing dominant variants (Wildtype, Alpha, Delta, and Omicron). The model is evaluated, using sex- and age-stratified cross-validation and validated by symptom profiles of the first 6 days. The variants achieve an AUC-ROC from 0.89 for Omicron and 0.6 for Alpha. No significant differences are observed for the results of the validation set (Alpha 0.63 and Omicron 0.87). The evaluation of symptom combinations using artificial intelligence can determine the individual risk for the presence of a COVID-19 infection, allows assignment to virus variants, and can contribute to the management of epidemics and pandemics on a national and international level. It can help to reduce the number of specific tests in times of low labor capacity and could help to early identify new virus variants.</description><subject>Artificial Intelligence</subject><subject>classification</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - epidemiology</subject><subject>digital symptom diaries</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>machine learning</subject><subject>Pandemics</subject><subject>prevalent virus variants</subject><subject>Public Health</subject><subject>SARS-CoV-2</subject><subject>symptom combinations</subject><issn>2296-2565</issn><issn>2296-2565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1rGzEQhpfQkIQkf6CHssde1pVG-6VLIZh-BAKFuu1VaEcjR2F35UqyQ_595dgNCQhpNHrnkUZvUbznbCFELz_ZzXa4XwADWHAmmBTypLgAkG0FTdu8exWfF9cxPjDGsq5mwM-Kc9HWDci6vijm1dO0SX4qjdPBUSx1HnmzdkmPZfJ-P5WGEmEqVzc_V9XS_6mgdLPNGefnLJ9NLrCWAs3J6UTlQOmRaC43gXZ6zNlyl-F6TvGqOLV6jHR9XC-L31-__Fp-r-5-fLtd3txVWHOZKgGWkSZh-kGANgSCU4O9HRBaw3TuGhH7dhgIuewZNJ2ElndNwy10IFFcFrcHrvH6QW2Cm3R4Ul479ZzwYa10SA5HUljrHm3HGxR9jUwOQoAwGjvijNDsWZ8PrPzjExnM_QQ9voG-PZndvVr7nZId4z10GfDxCAj-75ZiUpOLSOOoZ_LbqKCr67btpGyzFA5SDD7GQPblGs7U3nf17Lva-66OvueiD68f-FLy32XxD9tUrC0</recordid><startdate>20221114</startdate><enddate>20221114</enddate><creator>Grüne, Barbara</creator><creator>Kugler, Sabine</creator><creator>Ginzel, Sebastian</creator><creator>Wolff, Anna</creator><creator>Buess, Michael</creator><creator>Kossow, Annelene</creator><creator>Küfer-Weiß, Annika</creator><creator>Rüping, Stefan</creator><creator>Neuhann, Florian</creator><general>Frontiers Media S.A</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221114</creationdate><title>Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants</title><author>Grüne, Barbara ; Kugler, Sabine ; Ginzel, Sebastian ; Wolff, Anna ; Buess, Michael ; Kossow, Annelene ; Küfer-Weiß, Annika ; Rüping, Stefan ; Neuhann, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-32f0eae3d8b32ade231e5c8fbc26d0a202ccc86bbec198025792617551f2729c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>classification</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - epidemiology</topic><topic>digital symptom diaries</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>machine learning</topic><topic>Pandemics</topic><topic>prevalent virus variants</topic><topic>Public Health</topic><topic>SARS-CoV-2</topic><topic>symptom combinations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grüne, Barbara</creatorcontrib><creatorcontrib>Kugler, Sabine</creatorcontrib><creatorcontrib>Ginzel, Sebastian</creatorcontrib><creatorcontrib>Wolff, Anna</creatorcontrib><creatorcontrib>Buess, Michael</creatorcontrib><creatorcontrib>Kossow, Annelene</creatorcontrib><creatorcontrib>Küfer-Weiß, Annika</creatorcontrib><creatorcontrib>Rüping, Stefan</creatorcontrib><creatorcontrib>Neuhann, Florian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grüne, Barbara</au><au>Kugler, Sabine</au><au>Ginzel, Sebastian</au><au>Wolff, Anna</au><au>Buess, Michael</au><au>Kossow, Annelene</au><au>Küfer-Weiß, Annika</au><au>Rüping, Stefan</au><au>Neuhann, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants</atitle><jtitle>Frontiers in public health</jtitle><addtitle>Front Public Health</addtitle><date>2022-11-14</date><risdate>2022</risdate><volume>10</volume><spage>1030939</spage><epage>1030939</epage><pages>1030939-1030939</pages><issn>2296-2565</issn><eissn>2296-2565</eissn><abstract>The COVID-19 pandemic and the high numbers of infected individuals pose major challenges for public health departments. To overcome these challenges, the health department in Cologne has developed a software called DiKoMa. This software offers the possibility to track contact and index persons, but also provides a digital symptom diary. In this work, the question of whether these can also be used for diagnostic purposes will be investigated. Machine learning makes it possible to identify infections based on early symptom profiles and to distinguish between the predominant dominant variants. Focusing on the occurrence of the symptoms in the first week, a decision tree is trained for the differentiation between contact and index persons and the prevailing dominant variants (Wildtype, Alpha, Delta, and Omicron). The model is evaluated, using sex- and age-stratified cross-validation and validated by symptom profiles of the first 6 days. The variants achieve an AUC-ROC from 0.89 for Omicron and 0.6 for Alpha. No significant differences are observed for the results of the validation set (Alpha 0.63 and Omicron 0.87). The evaluation of symptom combinations using artificial intelligence can determine the individual risk for the presence of a COVID-19 infection, allows assignment to virus variants, and can contribute to the management of epidemics and pandemics on a national and international level. It can help to reduce the number of specific tests in times of low labor capacity and could help to early identify new virus variants.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>36452944</pmid><doi>10.3389/fpubh.2022.1030939</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-2565 |
ispartof | Frontiers in public health, 2022-11, Vol.10, p.1030939-1030939 |
issn | 2296-2565 2296-2565 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c4a8cf715c384c09b3323dac7e10ecdc |
source | PubMed (Medline) |
subjects | Artificial Intelligence classification COVID-19 - diagnosis COVID-19 - epidemiology digital symptom diaries Humans Infant, Newborn machine learning Pandemics prevalent virus variants Public Health SARS-CoV-2 symptom combinations |
title | Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symptom%20diaries%20as%20a%20digital%20tool%20to%20detect%20SARS-CoV-2%20infections%20and%20differentiate%20between%20prevalent%20variants&rft.jtitle=Frontiers%20in%20public%20health&rft.au=Gr%C3%BCne,%20Barbara&rft.date=2022-11-14&rft.volume=10&rft.spage=1030939&rft.epage=1030939&rft.pages=1030939-1030939&rft.issn=2296-2565&rft.eissn=2296-2565&rft_id=info:doi/10.3389/fpubh.2022.1030939&rft_dat=%3Cproquest_doaj_%3E2744667996%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-32f0eae3d8b32ade231e5c8fbc26d0a202ccc86bbec198025792617551f2729c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2744667996&rft_id=info:pmid/36452944&rfr_iscdi=true |