Loading…

Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants

The COVID-19 pandemic and the high numbers of infected individuals pose major challenges for public health departments. To overcome these challenges, the health department in Cologne has developed a software called DiKoMa. This software offers the possibility to track contact and index persons, but...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in public health 2022-11, Vol.10, p.1030939-1030939
Main Authors: Grüne, Barbara, Kugler, Sabine, Ginzel, Sebastian, Wolff, Anna, Buess, Michael, Kossow, Annelene, Küfer-Weiß, Annika, Rüping, Stefan, Neuhann, Florian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c419t-32f0eae3d8b32ade231e5c8fbc26d0a202ccc86bbec198025792617551f2729c3
container_end_page 1030939
container_issue
container_start_page 1030939
container_title Frontiers in public health
container_volume 10
creator Grüne, Barbara
Kugler, Sabine
Ginzel, Sebastian
Wolff, Anna
Buess, Michael
Kossow, Annelene
Küfer-Weiß, Annika
Rüping, Stefan
Neuhann, Florian
description The COVID-19 pandemic and the high numbers of infected individuals pose major challenges for public health departments. To overcome these challenges, the health department in Cologne has developed a software called DiKoMa. This software offers the possibility to track contact and index persons, but also provides a digital symptom diary. In this work, the question of whether these can also be used for diagnostic purposes will be investigated. Machine learning makes it possible to identify infections based on early symptom profiles and to distinguish between the predominant dominant variants. Focusing on the occurrence of the symptoms in the first week, a decision tree is trained for the differentiation between contact and index persons and the prevailing dominant variants (Wildtype, Alpha, Delta, and Omicron). The model is evaluated, using sex- and age-stratified cross-validation and validated by symptom profiles of the first 6 days. The variants achieve an AUC-ROC from 0.89 for Omicron and 0.6 for Alpha. No significant differences are observed for the results of the validation set (Alpha 0.63 and Omicron 0.87). The evaluation of symptom combinations using artificial intelligence can determine the individual risk for the presence of a COVID-19 infection, allows assignment to virus variants, and can contribute to the management of epidemics and pandemics on a national and international level. It can help to reduce the number of specific tests in times of low labor capacity and could help to early identify new virus variants.
doi_str_mv 10.3389/fpubh.2022.1030939
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c4a8cf715c384c09b3323dac7e10ecdc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c4a8cf715c384c09b3323dac7e10ecdc</doaj_id><sourcerecordid>2744667996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-32f0eae3d8b32ade231e5c8fbc26d0a202ccc86bbec198025792617551f2729c3</originalsourceid><addsrcrecordid>eNpVkU1rGzEQhpfQkIQkf6CHssde1pVG-6VLIZh-BAKFuu1VaEcjR2F35UqyQ_595dgNCQhpNHrnkUZvUbznbCFELz_ZzXa4XwADWHAmmBTypLgAkG0FTdu8exWfF9cxPjDGsq5mwM-Kc9HWDci6vijm1dO0SX4qjdPBUSx1HnmzdkmPZfJ-P5WGEmEqVzc_V9XS_6mgdLPNGefnLJ9NLrCWAs3J6UTlQOmRaC43gXZ6zNlyl-F6TvGqOLV6jHR9XC-L31-__Fp-r-5-fLtd3txVWHOZKgGWkSZh-kGANgSCU4O9HRBaw3TuGhH7dhgIuewZNJ2ElndNwy10IFFcFrcHrvH6QW2Cm3R4Ul479ZzwYa10SA5HUljrHm3HGxR9jUwOQoAwGjvijNDsWZ8PrPzjExnM_QQ9voG-PZndvVr7nZId4z10GfDxCAj-75ZiUpOLSOOoZ_LbqKCr67btpGyzFA5SDD7GQPblGs7U3nf17Lva-66OvueiD68f-FLy32XxD9tUrC0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2744667996</pqid></control><display><type>article</type><title>Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants</title><source>PubMed (Medline)</source><creator>Grüne, Barbara ; Kugler, Sabine ; Ginzel, Sebastian ; Wolff, Anna ; Buess, Michael ; Kossow, Annelene ; Küfer-Weiß, Annika ; Rüping, Stefan ; Neuhann, Florian</creator><creatorcontrib>Grüne, Barbara ; Kugler, Sabine ; Ginzel, Sebastian ; Wolff, Anna ; Buess, Michael ; Kossow, Annelene ; Küfer-Weiß, Annika ; Rüping, Stefan ; Neuhann, Florian</creatorcontrib><description>The COVID-19 pandemic and the high numbers of infected individuals pose major challenges for public health departments. To overcome these challenges, the health department in Cologne has developed a software called DiKoMa. This software offers the possibility to track contact and index persons, but also provides a digital symptom diary. In this work, the question of whether these can also be used for diagnostic purposes will be investigated. Machine learning makes it possible to identify infections based on early symptom profiles and to distinguish between the predominant dominant variants. Focusing on the occurrence of the symptoms in the first week, a decision tree is trained for the differentiation between contact and index persons and the prevailing dominant variants (Wildtype, Alpha, Delta, and Omicron). The model is evaluated, using sex- and age-stratified cross-validation and validated by symptom profiles of the first 6 days. The variants achieve an AUC-ROC from 0.89 for Omicron and 0.6 for Alpha. No significant differences are observed for the results of the validation set (Alpha 0.63 and Omicron 0.87). The evaluation of symptom combinations using artificial intelligence can determine the individual risk for the presence of a COVID-19 infection, allows assignment to virus variants, and can contribute to the management of epidemics and pandemics on a national and international level. It can help to reduce the number of specific tests in times of low labor capacity and could help to early identify new virus variants.</description><identifier>ISSN: 2296-2565</identifier><identifier>EISSN: 2296-2565</identifier><identifier>DOI: 10.3389/fpubh.2022.1030939</identifier><identifier>PMID: 36452944</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Artificial Intelligence ; classification ; COVID-19 - diagnosis ; COVID-19 - epidemiology ; digital symptom diaries ; Humans ; Infant, Newborn ; machine learning ; Pandemics ; prevalent virus variants ; Public Health ; SARS-CoV-2 ; symptom combinations</subject><ispartof>Frontiers in public health, 2022-11, Vol.10, p.1030939-1030939</ispartof><rights>Copyright © 2022 Grüne, Kugler, Ginzel, Wolff, Buess, Kossow, Küfer-Weiß, Rüping and Neuhann.</rights><rights>Copyright © 2022 Grüne, Kugler, Ginzel, Wolff, Buess, Kossow, Küfer-Weiß, Rüping and Neuhann. 2022 Grüne, Kugler, Ginzel, Wolff, Buess, Kossow, Küfer-Weiß, Rüping and Neuhann</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c419t-32f0eae3d8b32ade231e5c8fbc26d0a202ccc86bbec198025792617551f2729c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701827/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701827/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36452944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grüne, Barbara</creatorcontrib><creatorcontrib>Kugler, Sabine</creatorcontrib><creatorcontrib>Ginzel, Sebastian</creatorcontrib><creatorcontrib>Wolff, Anna</creatorcontrib><creatorcontrib>Buess, Michael</creatorcontrib><creatorcontrib>Kossow, Annelene</creatorcontrib><creatorcontrib>Küfer-Weiß, Annika</creatorcontrib><creatorcontrib>Rüping, Stefan</creatorcontrib><creatorcontrib>Neuhann, Florian</creatorcontrib><title>Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants</title><title>Frontiers in public health</title><addtitle>Front Public Health</addtitle><description>The COVID-19 pandemic and the high numbers of infected individuals pose major challenges for public health departments. To overcome these challenges, the health department in Cologne has developed a software called DiKoMa. This software offers the possibility to track contact and index persons, but also provides a digital symptom diary. In this work, the question of whether these can also be used for diagnostic purposes will be investigated. Machine learning makes it possible to identify infections based on early symptom profiles and to distinguish between the predominant dominant variants. Focusing on the occurrence of the symptoms in the first week, a decision tree is trained for the differentiation between contact and index persons and the prevailing dominant variants (Wildtype, Alpha, Delta, and Omicron). The model is evaluated, using sex- and age-stratified cross-validation and validated by symptom profiles of the first 6 days. The variants achieve an AUC-ROC from 0.89 for Omicron and 0.6 for Alpha. No significant differences are observed for the results of the validation set (Alpha 0.63 and Omicron 0.87). The evaluation of symptom combinations using artificial intelligence can determine the individual risk for the presence of a COVID-19 infection, allows assignment to virus variants, and can contribute to the management of epidemics and pandemics on a national and international level. It can help to reduce the number of specific tests in times of low labor capacity and could help to early identify new virus variants.</description><subject>Artificial Intelligence</subject><subject>classification</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - epidemiology</subject><subject>digital symptom diaries</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>machine learning</subject><subject>Pandemics</subject><subject>prevalent virus variants</subject><subject>Public Health</subject><subject>SARS-CoV-2</subject><subject>symptom combinations</subject><issn>2296-2565</issn><issn>2296-2565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1rGzEQhpfQkIQkf6CHssde1pVG-6VLIZh-BAKFuu1VaEcjR2F35UqyQ_595dgNCQhpNHrnkUZvUbznbCFELz_ZzXa4XwADWHAmmBTypLgAkG0FTdu8exWfF9cxPjDGsq5mwM-Kc9HWDci6vijm1dO0SX4qjdPBUSx1HnmzdkmPZfJ-P5WGEmEqVzc_V9XS_6mgdLPNGefnLJ9NLrCWAs3J6UTlQOmRaC43gXZ6zNlyl-F6TvGqOLV6jHR9XC-L31-__Fp-r-5-fLtd3txVWHOZKgGWkSZh-kGANgSCU4O9HRBaw3TuGhH7dhgIuewZNJ2ElndNwy10IFFcFrcHrvH6QW2Cm3R4Ul479ZzwYa10SA5HUljrHm3HGxR9jUwOQoAwGjvijNDsWZ8PrPzjExnM_QQ9voG-PZndvVr7nZId4z10GfDxCAj-75ZiUpOLSOOoZ_LbqKCr67btpGyzFA5SDD7GQPblGs7U3nf17Lva-66OvueiD68f-FLy32XxD9tUrC0</recordid><startdate>20221114</startdate><enddate>20221114</enddate><creator>Grüne, Barbara</creator><creator>Kugler, Sabine</creator><creator>Ginzel, Sebastian</creator><creator>Wolff, Anna</creator><creator>Buess, Michael</creator><creator>Kossow, Annelene</creator><creator>Küfer-Weiß, Annika</creator><creator>Rüping, Stefan</creator><creator>Neuhann, Florian</creator><general>Frontiers Media S.A</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221114</creationdate><title>Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants</title><author>Grüne, Barbara ; Kugler, Sabine ; Ginzel, Sebastian ; Wolff, Anna ; Buess, Michael ; Kossow, Annelene ; Küfer-Weiß, Annika ; Rüping, Stefan ; Neuhann, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-32f0eae3d8b32ade231e5c8fbc26d0a202ccc86bbec198025792617551f2729c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>classification</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - epidemiology</topic><topic>digital symptom diaries</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>machine learning</topic><topic>Pandemics</topic><topic>prevalent virus variants</topic><topic>Public Health</topic><topic>SARS-CoV-2</topic><topic>symptom combinations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grüne, Barbara</creatorcontrib><creatorcontrib>Kugler, Sabine</creatorcontrib><creatorcontrib>Ginzel, Sebastian</creatorcontrib><creatorcontrib>Wolff, Anna</creatorcontrib><creatorcontrib>Buess, Michael</creatorcontrib><creatorcontrib>Kossow, Annelene</creatorcontrib><creatorcontrib>Küfer-Weiß, Annika</creatorcontrib><creatorcontrib>Rüping, Stefan</creatorcontrib><creatorcontrib>Neuhann, Florian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grüne, Barbara</au><au>Kugler, Sabine</au><au>Ginzel, Sebastian</au><au>Wolff, Anna</au><au>Buess, Michael</au><au>Kossow, Annelene</au><au>Küfer-Weiß, Annika</au><au>Rüping, Stefan</au><au>Neuhann, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants</atitle><jtitle>Frontiers in public health</jtitle><addtitle>Front Public Health</addtitle><date>2022-11-14</date><risdate>2022</risdate><volume>10</volume><spage>1030939</spage><epage>1030939</epage><pages>1030939-1030939</pages><issn>2296-2565</issn><eissn>2296-2565</eissn><abstract>The COVID-19 pandemic and the high numbers of infected individuals pose major challenges for public health departments. To overcome these challenges, the health department in Cologne has developed a software called DiKoMa. This software offers the possibility to track contact and index persons, but also provides a digital symptom diary. In this work, the question of whether these can also be used for diagnostic purposes will be investigated. Machine learning makes it possible to identify infections based on early symptom profiles and to distinguish between the predominant dominant variants. Focusing on the occurrence of the symptoms in the first week, a decision tree is trained for the differentiation between contact and index persons and the prevailing dominant variants (Wildtype, Alpha, Delta, and Omicron). The model is evaluated, using sex- and age-stratified cross-validation and validated by symptom profiles of the first 6 days. The variants achieve an AUC-ROC from 0.89 for Omicron and 0.6 for Alpha. No significant differences are observed for the results of the validation set (Alpha 0.63 and Omicron 0.87). The evaluation of symptom combinations using artificial intelligence can determine the individual risk for the presence of a COVID-19 infection, allows assignment to virus variants, and can contribute to the management of epidemics and pandemics on a national and international level. It can help to reduce the number of specific tests in times of low labor capacity and could help to early identify new virus variants.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>36452944</pmid><doi>10.3389/fpubh.2022.1030939</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-2565
ispartof Frontiers in public health, 2022-11, Vol.10, p.1030939-1030939
issn 2296-2565
2296-2565
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c4a8cf715c384c09b3323dac7e10ecdc
source PubMed (Medline)
subjects Artificial Intelligence
classification
COVID-19 - diagnosis
COVID-19 - epidemiology
digital symptom diaries
Humans
Infant, Newborn
machine learning
Pandemics
prevalent virus variants
Public Health
SARS-CoV-2
symptom combinations
title Symptom diaries as a digital tool to detect SARS-CoV-2 infections and differentiate between prevalent variants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symptom%20diaries%20as%20a%20digital%20tool%20to%20detect%20SARS-CoV-2%20infections%20and%20differentiate%20between%20prevalent%20variants&rft.jtitle=Frontiers%20in%20public%20health&rft.au=Gr%C3%BCne,%20Barbara&rft.date=2022-11-14&rft.volume=10&rft.spage=1030939&rft.epage=1030939&rft.pages=1030939-1030939&rft.issn=2296-2565&rft.eissn=2296-2565&rft_id=info:doi/10.3389/fpubh.2022.1030939&rft_dat=%3Cproquest_doaj_%3E2744667996%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-32f0eae3d8b32ade231e5c8fbc26d0a202ccc86bbec198025792617551f2729c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2744667996&rft_id=info:pmid/36452944&rfr_iscdi=true