Loading…
Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors
Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment o...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2017-12, Vol.17 (12), p.2867 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103 |
container_end_page | |
container_issue | 12 |
container_start_page | 2867 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 17 |
creator | Malinowski, Pawel E Georgitzikis, Epimitheas Maes, Jorick Vamvaka, Ioanna Frazzica, Fortunato Van Olmen, Jan De Moor, Piet Heremans, Paul Hens, Zeger Cheyns, David |
description | Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10
A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors. |
doi_str_mv | 10.3390/s17122867 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c4d851cd63b949d6a1ba03ebd379ccc3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c4d851cd63b949d6a1ba03ebd379ccc3</doaj_id><sourcerecordid>1992059958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhgex2Fq98A_IgDd6MW2-P26EUl1daFFx70MmObObZSapyYzgvze6dWm9OuHk4eHlvE3zCqMLSjW6LFhiQpSQT5ozzAjrFCHo6YP3afO8lD1ChFKqnjWnRBNKlMRnzWqzC7FbhXFqvy02zsvUfkhz-3WX5uRD8tAOKbe3KaYxzLvg2nUcss3g2_Vkt9B-h1hSLi-ak8GOBV7ez_Nms_q4uf7c3Xz5tL6-uukcE3rulOgxaCSF4kwS31s1AHUIAxUglfPIopoQHBaC9dxy7oS0iAyCcO0woufN-qD1ye7NXQ6Tzb9MssH8XaS8NTbPwY1gHPOKY-cF7TXTXljcVzn0nkrtnKPV9f7gulv6CbyDOGc7PpI-_olhZ7bpp-GSY6FEFby9F-T0Y4EymykUB-NoI6SlGKylYIwijiv65j90n5Yc66UqpQniWnNVqXcHyuVUSobhGAYj86docyy6sq8fpj-S_5qlvwGBKqHc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992059958</pqid></control><display><type>article</type><title>Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Malinowski, Pawel E ; Georgitzikis, Epimitheas ; Maes, Jorick ; Vamvaka, Ioanna ; Frazzica, Fortunato ; Van Olmen, Jan ; De Moor, Piet ; Heremans, Paul ; Hens, Zeger ; Cheyns, David</creator><creatorcontrib>Malinowski, Pawel E ; Georgitzikis, Epimitheas ; Maes, Jorick ; Vamvaka, Ioanna ; Frazzica, Fortunato ; Van Olmen, Jan ; De Moor, Piet ; Heremans, Paul ; Hens, Zeger ; Cheyns, David</creatorcontrib><description>Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10
A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s17122867</identifier><identifier>PMID: 29232871</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Architecture ; Augmented reality ; Biometrics ; CMOS ; Dark current ; image sensor ; imaging ; infrared ; Infrared cameras ; Infrared imagery ; Infrared imaging ; Military applications ; monolithic integration ; Obstacle avoidance ; PbS ; quantum dot ; Quantum dots ; Sensors ; Thin films</subject><ispartof>Sensors (Basel, Switzerland), 2017-12, Vol.17 (12), p.2867</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103</citedby><cites>FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103</cites><orcidid>0000-0002-2934-470X ; 0000-0002-5666-6544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1992059958/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1992059958?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29232871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malinowski, Pawel E</creatorcontrib><creatorcontrib>Georgitzikis, Epimitheas</creatorcontrib><creatorcontrib>Maes, Jorick</creatorcontrib><creatorcontrib>Vamvaka, Ioanna</creatorcontrib><creatorcontrib>Frazzica, Fortunato</creatorcontrib><creatorcontrib>Van Olmen, Jan</creatorcontrib><creatorcontrib>De Moor, Piet</creatorcontrib><creatorcontrib>Heremans, Paul</creatorcontrib><creatorcontrib>Hens, Zeger</creatorcontrib><creatorcontrib>Cheyns, David</creatorcontrib><title>Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10
A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.</description><subject>Architecture</subject><subject>Augmented reality</subject><subject>Biometrics</subject><subject>CMOS</subject><subject>Dark current</subject><subject>image sensor</subject><subject>imaging</subject><subject>infrared</subject><subject>Infrared cameras</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Military applications</subject><subject>monolithic integration</subject><subject>Obstacle avoidance</subject><subject>PbS</subject><subject>quantum dot</subject><subject>Quantum dots</subject><subject>Sensors</subject><subject>Thin films</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV1rFDEUhgex2Fq98A_IgDd6MW2-P26EUl1daFFx70MmObObZSapyYzgvze6dWm9OuHk4eHlvE3zCqMLSjW6LFhiQpSQT5ozzAjrFCHo6YP3afO8lD1ChFKqnjWnRBNKlMRnzWqzC7FbhXFqvy02zsvUfkhz-3WX5uRD8tAOKbe3KaYxzLvg2nUcss3g2_Vkt9B-h1hSLi-ak8GOBV7ez_Nms_q4uf7c3Xz5tL6-uukcE3rulOgxaCSF4kwS31s1AHUIAxUglfPIopoQHBaC9dxy7oS0iAyCcO0woufN-qD1ye7NXQ6Tzb9MssH8XaS8NTbPwY1gHPOKY-cF7TXTXljcVzn0nkrtnKPV9f7gulv6CbyDOGc7PpI-_olhZ7bpp-GSY6FEFby9F-T0Y4EymykUB-NoI6SlGKylYIwijiv65j90n5Yc66UqpQniWnNVqXcHyuVUSobhGAYj86docyy6sq8fpj-S_5qlvwGBKqHc</recordid><startdate>20171210</startdate><enddate>20171210</enddate><creator>Malinowski, Pawel E</creator><creator>Georgitzikis, Epimitheas</creator><creator>Maes, Jorick</creator><creator>Vamvaka, Ioanna</creator><creator>Frazzica, Fortunato</creator><creator>Van Olmen, Jan</creator><creator>De Moor, Piet</creator><creator>Heremans, Paul</creator><creator>Hens, Zeger</creator><creator>Cheyns, David</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2934-470X</orcidid><orcidid>https://orcid.org/0000-0002-5666-6544</orcidid></search><sort><creationdate>20171210</creationdate><title>Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors</title><author>Malinowski, Pawel E ; Georgitzikis, Epimitheas ; Maes, Jorick ; Vamvaka, Ioanna ; Frazzica, Fortunato ; Van Olmen, Jan ; De Moor, Piet ; Heremans, Paul ; Hens, Zeger ; Cheyns, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Architecture</topic><topic>Augmented reality</topic><topic>Biometrics</topic><topic>CMOS</topic><topic>Dark current</topic><topic>image sensor</topic><topic>imaging</topic><topic>infrared</topic><topic>Infrared cameras</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Military applications</topic><topic>monolithic integration</topic><topic>Obstacle avoidance</topic><topic>PbS</topic><topic>quantum dot</topic><topic>Quantum dots</topic><topic>Sensors</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malinowski, Pawel E</creatorcontrib><creatorcontrib>Georgitzikis, Epimitheas</creatorcontrib><creatorcontrib>Maes, Jorick</creatorcontrib><creatorcontrib>Vamvaka, Ioanna</creatorcontrib><creatorcontrib>Frazzica, Fortunato</creatorcontrib><creatorcontrib>Van Olmen, Jan</creatorcontrib><creatorcontrib>De Moor, Piet</creatorcontrib><creatorcontrib>Heremans, Paul</creatorcontrib><creatorcontrib>Hens, Zeger</creatorcontrib><creatorcontrib>Cheyns, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malinowski, Pawel E</au><au>Georgitzikis, Epimitheas</au><au>Maes, Jorick</au><au>Vamvaka, Ioanna</au><au>Frazzica, Fortunato</au><au>Van Olmen, Jan</au><au>De Moor, Piet</au><au>Heremans, Paul</au><au>Hens, Zeger</au><au>Cheyns, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2017-12-10</date><risdate>2017</risdate><volume>17</volume><issue>12</issue><spage>2867</spage><pages>2867-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10
A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29232871</pmid><doi>10.3390/s17122867</doi><orcidid>https://orcid.org/0000-0002-2934-470X</orcidid><orcidid>https://orcid.org/0000-0002-5666-6544</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2017-12, Vol.17 (12), p.2867 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c4d851cd63b949d6a1ba03ebd379ccc3 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Architecture Augmented reality Biometrics CMOS Dark current image sensor imaging infrared Infrared cameras Infrared imagery Infrared imaging Military applications monolithic integration Obstacle avoidance PbS quantum dot Quantum dots Sensors Thin films |
title | Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-Film%20Quantum%20Dot%20Photodiode%20for%20Monolithic%20Infrared%20Image%20Sensors&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Malinowski,%20Pawel%20E&rft.date=2017-12-10&rft.volume=17&rft.issue=12&rft.spage=2867&rft.pages=2867-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s17122867&rft_dat=%3Cproquest_doaj_%3E1992059958%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1992059958&rft_id=info:pmid/29232871&rfr_iscdi=true |