Loading…

Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors

Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment o...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2017-12, Vol.17 (12), p.2867
Main Authors: Malinowski, Pawel E, Georgitzikis, Epimitheas, Maes, Jorick, Vamvaka, Ioanna, Frazzica, Fortunato, Van Olmen, Jan, De Moor, Piet, Heremans, Paul, Hens, Zeger, Cheyns, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103
cites cdi_FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103
container_end_page
container_issue 12
container_start_page 2867
container_title Sensors (Basel, Switzerland)
container_volume 17
creator Malinowski, Pawel E
Georgitzikis, Epimitheas
Maes, Jorick
Vamvaka, Ioanna
Frazzica, Fortunato
Van Olmen, Jan
De Moor, Piet
Heremans, Paul
Hens, Zeger
Cheyns, David
description Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10 A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.
doi_str_mv 10.3390/s17122867
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c4d851cd63b949d6a1ba03ebd379ccc3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c4d851cd63b949d6a1ba03ebd379ccc3</doaj_id><sourcerecordid>1992059958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhgex2Fq98A_IgDd6MW2-P26EUl1daFFx70MmObObZSapyYzgvze6dWm9OuHk4eHlvE3zCqMLSjW6LFhiQpSQT5ozzAjrFCHo6YP3afO8lD1ChFKqnjWnRBNKlMRnzWqzC7FbhXFqvy02zsvUfkhz-3WX5uRD8tAOKbe3KaYxzLvg2nUcss3g2_Vkt9B-h1hSLi-ak8GOBV7ez_Nms_q4uf7c3Xz5tL6-uukcE3rulOgxaCSF4kwS31s1AHUIAxUglfPIopoQHBaC9dxy7oS0iAyCcO0woufN-qD1ye7NXQ6Tzb9MssH8XaS8NTbPwY1gHPOKY-cF7TXTXljcVzn0nkrtnKPV9f7gulv6CbyDOGc7PpI-_olhZ7bpp-GSY6FEFby9F-T0Y4EymykUB-NoI6SlGKylYIwijiv65j90n5Yc66UqpQniWnNVqXcHyuVUSobhGAYj86docyy6sq8fpj-S_5qlvwGBKqHc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992059958</pqid></control><display><type>article</type><title>Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Malinowski, Pawel E ; Georgitzikis, Epimitheas ; Maes, Jorick ; Vamvaka, Ioanna ; Frazzica, Fortunato ; Van Olmen, Jan ; De Moor, Piet ; Heremans, Paul ; Hens, Zeger ; Cheyns, David</creator><creatorcontrib>Malinowski, Pawel E ; Georgitzikis, Epimitheas ; Maes, Jorick ; Vamvaka, Ioanna ; Frazzica, Fortunato ; Van Olmen, Jan ; De Moor, Piet ; Heremans, Paul ; Hens, Zeger ; Cheyns, David</creatorcontrib><description>Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10 A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s17122867</identifier><identifier>PMID: 29232871</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Architecture ; Augmented reality ; Biometrics ; CMOS ; Dark current ; image sensor ; imaging ; infrared ; Infrared cameras ; Infrared imagery ; Infrared imaging ; Military applications ; monolithic integration ; Obstacle avoidance ; PbS ; quantum dot ; Quantum dots ; Sensors ; Thin films</subject><ispartof>Sensors (Basel, Switzerland), 2017-12, Vol.17 (12), p.2867</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103</citedby><cites>FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103</cites><orcidid>0000-0002-2934-470X ; 0000-0002-5666-6544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1992059958/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1992059958?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29232871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malinowski, Pawel E</creatorcontrib><creatorcontrib>Georgitzikis, Epimitheas</creatorcontrib><creatorcontrib>Maes, Jorick</creatorcontrib><creatorcontrib>Vamvaka, Ioanna</creatorcontrib><creatorcontrib>Frazzica, Fortunato</creatorcontrib><creatorcontrib>Van Olmen, Jan</creatorcontrib><creatorcontrib>De Moor, Piet</creatorcontrib><creatorcontrib>Heremans, Paul</creatorcontrib><creatorcontrib>Hens, Zeger</creatorcontrib><creatorcontrib>Cheyns, David</creatorcontrib><title>Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10 A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.</description><subject>Architecture</subject><subject>Augmented reality</subject><subject>Biometrics</subject><subject>CMOS</subject><subject>Dark current</subject><subject>image sensor</subject><subject>imaging</subject><subject>infrared</subject><subject>Infrared cameras</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Military applications</subject><subject>monolithic integration</subject><subject>Obstacle avoidance</subject><subject>PbS</subject><subject>quantum dot</subject><subject>Quantum dots</subject><subject>Sensors</subject><subject>Thin films</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV1rFDEUhgex2Fq98A_IgDd6MW2-P26EUl1daFFx70MmObObZSapyYzgvze6dWm9OuHk4eHlvE3zCqMLSjW6LFhiQpSQT5ozzAjrFCHo6YP3afO8lD1ChFKqnjWnRBNKlMRnzWqzC7FbhXFqvy02zsvUfkhz-3WX5uRD8tAOKbe3KaYxzLvg2nUcss3g2_Vkt9B-h1hSLi-ak8GOBV7ez_Nms_q4uf7c3Xz5tL6-uukcE3rulOgxaCSF4kwS31s1AHUIAxUglfPIopoQHBaC9dxy7oS0iAyCcO0woufN-qD1ye7NXQ6Tzb9MssH8XaS8NTbPwY1gHPOKY-cF7TXTXljcVzn0nkrtnKPV9f7gulv6CbyDOGc7PpI-_olhZ7bpp-GSY6FEFby9F-T0Y4EymykUB-NoI6SlGKylYIwijiv65j90n5Yc66UqpQniWnNVqXcHyuVUSobhGAYj86docyy6sq8fpj-S_5qlvwGBKqHc</recordid><startdate>20171210</startdate><enddate>20171210</enddate><creator>Malinowski, Pawel E</creator><creator>Georgitzikis, Epimitheas</creator><creator>Maes, Jorick</creator><creator>Vamvaka, Ioanna</creator><creator>Frazzica, Fortunato</creator><creator>Van Olmen, Jan</creator><creator>De Moor, Piet</creator><creator>Heremans, Paul</creator><creator>Hens, Zeger</creator><creator>Cheyns, David</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2934-470X</orcidid><orcidid>https://orcid.org/0000-0002-5666-6544</orcidid></search><sort><creationdate>20171210</creationdate><title>Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors</title><author>Malinowski, Pawel E ; Georgitzikis, Epimitheas ; Maes, Jorick ; Vamvaka, Ioanna ; Frazzica, Fortunato ; Van Olmen, Jan ; De Moor, Piet ; Heremans, Paul ; Hens, Zeger ; Cheyns, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Architecture</topic><topic>Augmented reality</topic><topic>Biometrics</topic><topic>CMOS</topic><topic>Dark current</topic><topic>image sensor</topic><topic>imaging</topic><topic>infrared</topic><topic>Infrared cameras</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Military applications</topic><topic>monolithic integration</topic><topic>Obstacle avoidance</topic><topic>PbS</topic><topic>quantum dot</topic><topic>Quantum dots</topic><topic>Sensors</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malinowski, Pawel E</creatorcontrib><creatorcontrib>Georgitzikis, Epimitheas</creatorcontrib><creatorcontrib>Maes, Jorick</creatorcontrib><creatorcontrib>Vamvaka, Ioanna</creatorcontrib><creatorcontrib>Frazzica, Fortunato</creatorcontrib><creatorcontrib>Van Olmen, Jan</creatorcontrib><creatorcontrib>De Moor, Piet</creatorcontrib><creatorcontrib>Heremans, Paul</creatorcontrib><creatorcontrib>Hens, Zeger</creatorcontrib><creatorcontrib>Cheyns, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malinowski, Pawel E</au><au>Georgitzikis, Epimitheas</au><au>Maes, Jorick</au><au>Vamvaka, Ioanna</au><au>Frazzica, Fortunato</au><au>Van Olmen, Jan</au><au>De Moor, Piet</au><au>Heremans, Paul</au><au>Hens, Zeger</au><au>Cheyns, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2017-12-10</date><risdate>2017</risdate><volume>17</volume><issue>12</issue><spage>2867</spage><pages>2867-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10 A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29232871</pmid><doi>10.3390/s17122867</doi><orcidid>https://orcid.org/0000-0002-2934-470X</orcidid><orcidid>https://orcid.org/0000-0002-5666-6544</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2017-12, Vol.17 (12), p.2867
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c4d851cd63b949d6a1ba03ebd379ccc3
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Architecture
Augmented reality
Biometrics
CMOS
Dark current
image sensor
imaging
infrared
Infrared cameras
Infrared imagery
Infrared imaging
Military applications
monolithic integration
Obstacle avoidance
PbS
quantum dot
Quantum dots
Sensors
Thin films
title Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-Film%20Quantum%20Dot%20Photodiode%20for%20Monolithic%20Infrared%20Image%20Sensors&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Malinowski,%20Pawel%20E&rft.date=2017-12-10&rft.volume=17&rft.issue=12&rft.spage=2867&rft.pages=2867-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s17122867&rft_dat=%3Cproquest_doaj_%3E1992059958%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-86b1e907685472dba8fe3c01e36e78cd0a0333ec1664b5a55c67a02f6259c103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1992059958&rft_id=info:pmid/29232871&rfr_iscdi=true