Loading…

Development of Smoothed Particle Hydrodynamics based water hammer model for water distribution systems

Smoothed Particle Hydrodynamics (SPH) method is used to solve water hammer equations for pipeline systems due to its potential advantages of easily capturing column separation and slug impact. Currently, the SPH-based water hammer model has been only developed to simulate single pipe flow with simpl...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of computational fluid mechanics 2023-12, Vol.17 (1)
Main Authors: Song, Wenke, Yan, Hexiang, Li, Fei, Tao, Tao, Duan, Huanfeng, Xin, Kunlun, Li, Shuping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Smoothed Particle Hydrodynamics (SPH) method is used to solve water hammer equations for pipeline systems due to its potential advantages of easily capturing column separation and slug impact. Currently, the SPH-based water hammer model has been only developed to simulate single pipe flow with simple boundary conditions. It is still a challenge to apply the SPH-based water hammer model to practical water distribution systems (WDSs). To address this issue, this study develops a complete SPH-based Water Hammer model for Water Distribution System (SPH-WHWDS). Within the proposed method, the complex internal and external boundary condition treatment models of the multi-pipe joint junction and different hydraulic components are developed. Buffer and mirror particles are designed for boundary treatment coupling with the method of characteristics (MOC). Two benchmark test cases, including an unsteady pipe flow experiment and a complex WDS, are used to validate the proposed model, with the data from the experimental test in the literature and the simulation results by the classical MOC. The results show the proposed SPH-WHWDS model is capable to simulate transient flows with accurate and robust results for pipeline systems, which may provide further insights and an alternative tool to study water hammer phenomena in complex WDSs.
ISSN:1994-2060
1997-003X
DOI:10.1080/19942060.2023.2171139