Loading…
Generalized Orbifold Euler Characteristics on the Grothendieck Ring of Varieties with Actions of Finite Groups
The notion of the orbifold Euler characteristic came from physics at the end of the 1980s. Coincidence (up to sign) of the orbifold Euler characteristics is a necessary condition for crepant resolutions of orbifolds to be mirror symmetric. There were defined higher order versions of the orbifold Eul...
Saved in:
Published in: | Symmetry (Basel) 2019-07, Vol.11 (7), p.902 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The notion of the orbifold Euler characteristic came from physics at the end of the 1980s. Coincidence (up to sign) of the orbifold Euler characteristics is a necessary condition for crepant resolutions of orbifolds to be mirror symmetric. There were defined higher order versions of the orbifold Euler characteristic and generalized (“motivic”) versions of them. In a previous paper, the authors defined a notion of the Grothendieck ring K 0 fGr ( Var C ) of varieties with actions of finite groups on which the orbifold Euler characteristic and its higher order versions are homomorphisms to the ring of integers. Here, we define the generalized orbifold Euler characteristic and higher order versions of it as ring homomorphisms from K 0 fGr ( Var C ) to the Grothendieck ring K 0 ( Var C ) of complex quasi-projective varieties and give some analogues of the classical Macdonald equations for the generating series of the Euler characteristics of the symmetric products of a space. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym11070902 |