Loading…

Hydrophilic Biocompatible Poly(Acrylic Acid-co-Maleic Acid) Polymer as a Surface-Coating Ligand of Ultrasmall Gd2O3 Nanoparticles to Obtain a High r1 Value and T1 MR Images

The water proton spin relaxivity, colloidal stability, and biocompatibility of nanoparticle-based magnetic resonance imaging (MRI) contrast agents depend on the surface-coating ligands. Here, poly(acrylic acid-co-maleic acid) (PAAMA) (Mw = ~3000 amu) is explored as a surface-coating ligand of ultras...

Full description

Saved in:
Bibliographic Details
Published in:Diagnostics (Basel) 2020-12, Vol.11 (1), p.2
Main Authors: Jang, Yeong-Ji, Liu, Shuwen, Yue, Huan, Park, Ji Ae, Cha, Hyunsil, Ho, Son Long, Marasini, Shanti, Ghazanfari, Adibehalsadat, Ahmad, Mohammad Yaseen, Miao, Xu, Tegafaw, Tirusew, Chae, Kwon-Seok, Chang, Yongmin, Lee, Gang Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The water proton spin relaxivity, colloidal stability, and biocompatibility of nanoparticle-based magnetic resonance imaging (MRI) contrast agents depend on the surface-coating ligands. Here, poly(acrylic acid-co-maleic acid) (PAAMA) (Mw = ~3000 amu) is explored as a surface-coating ligand of ultrasmall gadolinium oxide (Gd2O3) nanoparticles. Owing to the numerous carboxylic groups in PAAMA, which allow its strong conjugation with the nanoparticle surfaces and the attraction of abundant water molecules to the nanoparticles, the synthesized PAAMA-coated ultrasmall Gd2O3 nanoparticles (davg = 1.8 nm and aavg = 9.0 nm) exhibit excellent colloidal stability, extremely low cellular toxicity, and a high longitudinal water proton spin relaxivity (r1) of 40.6 s−1mM−1 (r2/r1 = 1.56, where r2 = transverse water proton spin relaxivity), which is approximately 10 times higher than those of commercial molecular contrast agents. The effectiveness of PAAMA-coated ultrasmall Gd2O3 nanoparticles as a T1 MRI contrast agent is confirmed by the high positive contrast enhancements of the in vivo T1 MR images at the 3.0 T MR field.
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics11010002