Loading…

Accurate optimization technique for phase-gradient metasurfaces used in compact near-field meta-steering systems

Near-Field Meta-Steering (NFMS) is a constantly evolving and progressively emerging novel antenna beam-steering technology that involves an elegant assembly of a base antenna and a pair of Phase-Gradient Metasurfaces (PGMs) placed in the near-field region of the antenna aperture. The upper PGM in an...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-03, Vol.12 (1), p.4118-4118, Article 4118
Main Authors: Singh, Khushboo, Afzal, Muhammad U., Esselle, Karu P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Near-Field Meta-Steering (NFMS) is a constantly evolving and progressively emerging novel antenna beam-steering technology that involves an elegant assembly of a base antenna and a pair of Phase-Gradient Metasurfaces (PGMs) placed in the near-field region of the antenna aperture. The upper PGM in an NFMS system receives an oblique incidence from the lower PGM at all times, a fact that is ignored in the traditional design process of upper metasurfaces. This work proposes an accurate optimization method for metasurfaces in NFMS systems to reduce signal leakage by suppressing the grating lobes and side lobes that are innate artifacts of beam-steering. We detail the design and optimization approach for both upper and lower metasurface. Compared to the conventionally optimized compact 2D steering system, the proposed system exhibits higher directivity and lower side-lobe and grating lobe levels within the entire scanning range. The broadside directivity is 1.4 dB higher, and the side-lobe level is 4 dB lower in comparison. The beam-steering patterns for the proposed 2D compact design are experimentally validated, and the measured and predicted results are in excellent concurrence. The versatile compatibility of truncated PGMs with a low gain antenna makes it a compelling technology for wireless backhaul mesh networks and future antenna hardware.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-08143-x