Loading…

Bioinspired Synthesis of Zinc Molybdate Nanoparticles: An Efficient Material for Growth Inhibition of Escherichia coli, Staphylococcus aureus, and Dye Remediation

Zinc molybdate nanoparticles with molybdate are synthesized through green method with different salt precursors using Moringa oleifera leaf extract. Those nanoparticles had structural, vibrational, and morphological properties, which were determined by X-ray diffraction (XRD). The crystalline size o...

Full description

Saved in:
Bibliographic Details
Published in:Bioinorganic chemistry and applications 2023, Vol.2023, p.1287325-11
Main Authors: Reddy, Sanjeev Machindra, Karmankar, Smita Badur, Alzahrani, Hayat Ali, Hadap, Arti, Iqbal, Amjad, Alenazy, Rawaf, Salem-Bekhit, Mounir M., Jain, Bhawana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zinc molybdate nanoparticles with molybdate are synthesized through green method with different salt precursors using Moringa oleifera leaf extract. Those nanoparticles had structural, vibrational, and morphological properties, which were determined by X-ray diffraction (XRD). The crystalline size of synthesized zinc molybdate was 24.9 nm. Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) clearly showed the attachment of molybdate with ZnO. The synthesized nanomaterial was also characterized through UV-visible spectroscopy which had 4.40 eV band gap energy. Those nanoparticles were also characterized via thermogravimetric analysis (TGA-DTA) and photoluminance spectroscopy (PL). ZnMoO4 had photocatalytic property via methylene blue dye. After 190 minutes, the dye changed to colourless from blue colour. The degradation efficiency was around 92.8%. It also showed their antibacterial effect via Escherichia coli and Staphylococcusaureus bacterial strains. In the presence of light and air, nanoparticles of ZnMoO4 inhibit the growth of cells of E. coli and S. aureus bacterial strains because of ROS (reactive oxygen species) generation. Because of the formation of singlet oxygen (O2∗−), hydrogen oxide radical (−OH∗), and hydrogen peroxide (H2O2), ZnMoO4 showed photodegradation reaction against aq. solution of methylene blue dye at 6 pH with constant time interval. With time, the activity of ZnMoO4 also decreased because of the generation of a layer of hydrogen oxide (-OH) on nanomaterial surface, which could be washed with ethanol and distilled water. After drying, the catalytic Zinc molybdate nanoparticles could be reused again in the next catalytic reaction.
ISSN:1565-3633
1687-479X
DOI:10.1155/2023/1287325