Loading…

Novel ANN Method for Solving Ordinary and Time-Fractional Black–Scholes Equation

The main aim of this study is to introduce a 2-layered artificial neural network (ANN) for solving the Black–Scholes partial differential equation (PDE) of either fractional or ordinary orders. Firstly, a discretization method is employed to change the model into a sequence of ordinary differential...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1)
Main Authors: Bajalan, Saeed, Bajalan, Nastaran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main aim of this study is to introduce a 2-layered artificial neural network (ANN) for solving the Black–Scholes partial differential equation (PDE) of either fractional or ordinary orders. Firstly, a discretization method is employed to change the model into a sequence of ordinary differential equations (ODE). Subsequently, each of these ODEs is solved with the aid of an ANN. Adam optimization is employed as the learning paradigm since it can add the foreknowledge of slowing down the process of optimization when getting close to the actual optimum solution. The model also takes advantage of fine-tuning for speeding up the process and domain mapping to confront the infinite domain issue. Finally, the accuracy, speed, and convergence of the method for solving several types of the Black–Scholes model are reported.
ISSN:1076-2787
1099-0526
DOI:10.1155/2021/5511396