Loading…

Numerical Simulation of Hydraulic Fracturing in Earth and Rockfill Dam Using Extended Finite Element Method

Hydraulic fracturing is one of the most important factors affecting the safety of earth and rockfill dam. In this paper, the extended finite element method (XFEM) is used to simulate the hydraulic fracturing behavior in an actual high earth and rockfill dam. The possibility of hydraulic fracturing o...

Full description

Saved in:
Bibliographic Details
Published in:Advances in civil engineering 2018-01, Vol.2018 (2018), p.1-8
Main Authors: Zhu, Jungao, Chen, Shengshui, Fu, Zhongzhi, Ji, En-yue, Geng, Zhizhou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3
cites cdi_FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3
container_end_page 8
container_issue 2018
container_start_page 1
container_title Advances in civil engineering
container_volume 2018
creator Zhu, Jungao
Chen, Shengshui
Fu, Zhongzhi
Ji, En-yue
Geng, Zhizhou
description Hydraulic fracturing is one of the most important factors affecting the safety of earth and rockfill dam. In this paper, the extended finite element method (XFEM) is used to simulate the hydraulic fracturing behavior in an actual high earth and rockfill dam. The possibility of hydraulic fracturing occurrence is analyzed, and the critical crack length is obtained when hydraulic fracturing occurs. Then, the crack propagation path and length is obtained by inserting initial crack of different lengths at different elevation. The results indicate that hydraulic fracturing will not occur without the permeable weak surface (initial crack). The critical initial crack length required for hydraulic fracturing is 5.3 m of the calculation model in this paper. The propagation length decreases with the increase of elevation, and the average propagation length decreases from 9.4 m to 3.4 m. Furthermore, it is proved that the direction of crack propagation has a certain angle with the horizontal plane toward the downstream. Considering the up-narrow and down-wide type of the core wall, the possibility of hydraulic fracturing to penetrate the core is extremely high when the upper part of the core wall reaches the critical crack length.
doi_str_mv 10.1155/2018/1782686
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c572576ffa0244b4b2abd488e81cb2d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c572576ffa0244b4b2abd488e81cb2d8</doaj_id><sourcerecordid>2025317916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3</originalsourceid><addsrcrecordid>eNqF0c1PFDEYBvCJ0USC3DybJh51oX1n-rFHg7tCgpKgnJt3-sEWZlrsdIL893QdgkdPbdpfnrfN0zTvGT1mjPMToEydMKlAKPGqOWBCyZWi6-71y16Jt83RNIWedp0EBcAOmrsf8-hyMDiQn2GcBywhRZI8OXu0GechGLLNaMqcQ7whIZIN5rIjGC25SubOh2EgX3Ek19P-fvOnuGidJdsQQ3FkM7jRxUK-u7JL9l3zxuMwuaPn9bC53m5-nZ6tLi6_nZ9-uVgZTqGsOKUtF5LDWraeC4rAjGQtVa0w0Ld8TT2I3nLoJEf0aAzlzAJvrVGU96Y9bM6XXJvwVt_nMGJ-1AmD_nuQ8o2unwhmcNpwCVwK75FC1_VdD9jbTimnmOnBqpr1ccm6z-n37Kaib9OcY32-BlpnMrlmoqrPizI5TVN2_mUqo3rfjt63o5_bqfzTwnchWnwI_9MfFu2qcR7_6Wprke0TMIqXAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025317916</pqid></control><display><type>article</type><title>Numerical Simulation of Hydraulic Fracturing in Earth and Rockfill Dam Using Extended Finite Element Method</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Zhu, Jungao ; Chen, Shengshui ; Fu, Zhongzhi ; Ji, En-yue ; Geng, Zhizhou</creator><contributor>Cao, Rihong ; Rihong Cao</contributor><creatorcontrib>Zhu, Jungao ; Chen, Shengshui ; Fu, Zhongzhi ; Ji, En-yue ; Geng, Zhizhou ; Cao, Rihong ; Rihong Cao</creatorcontrib><description>Hydraulic fracturing is one of the most important factors affecting the safety of earth and rockfill dam. In this paper, the extended finite element method (XFEM) is used to simulate the hydraulic fracturing behavior in an actual high earth and rockfill dam. The possibility of hydraulic fracturing occurrence is analyzed, and the critical crack length is obtained when hydraulic fracturing occurs. Then, the crack propagation path and length is obtained by inserting initial crack of different lengths at different elevation. The results indicate that hydraulic fracturing will not occur without the permeable weak surface (initial crack). The critical initial crack length required for hydraulic fracturing is 5.3 m of the calculation model in this paper. The propagation length decreases with the increase of elevation, and the average propagation length decreases from 9.4 m to 3.4 m. Furthermore, it is proved that the direction of crack propagation has a certain angle with the horizontal plane toward the downstream. Considering the up-narrow and down-wide type of the core wall, the possibility of hydraulic fracturing to penetrate the core is extremely high when the upper part of the core wall reaches the critical crack length.</description><identifier>ISSN: 1687-8086</identifier><identifier>EISSN: 1687-8094</identifier><identifier>DOI: 10.1155/2018/1782686</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Civil engineering ; Computer simulation ; Crack propagation ; Dams ; Earth ; Elevation ; Engineering ; Finite element analysis ; Finite element method ; Hydraulic fracturing ; Mathematical analysis ; Mathematical models ; Methods ; Numerical analysis ; Propagation ; Researchers ; Rockfill dams ; Simulation</subject><ispartof>Advances in civil engineering, 2018-01, Vol.2018 (2018), p.1-8</ispartof><rights>Copyright © 2018 Enyue Ji et al.</rights><rights>Copyright © 2018 Enyue Ji et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3</citedby><cites>FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3</cites><orcidid>0000-0003-4290-1942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2025317916/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2025317916?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><contributor>Cao, Rihong</contributor><contributor>Rihong Cao</contributor><creatorcontrib>Zhu, Jungao</creatorcontrib><creatorcontrib>Chen, Shengshui</creatorcontrib><creatorcontrib>Fu, Zhongzhi</creatorcontrib><creatorcontrib>Ji, En-yue</creatorcontrib><creatorcontrib>Geng, Zhizhou</creatorcontrib><title>Numerical Simulation of Hydraulic Fracturing in Earth and Rockfill Dam Using Extended Finite Element Method</title><title>Advances in civil engineering</title><description>Hydraulic fracturing is one of the most important factors affecting the safety of earth and rockfill dam. In this paper, the extended finite element method (XFEM) is used to simulate the hydraulic fracturing behavior in an actual high earth and rockfill dam. The possibility of hydraulic fracturing occurrence is analyzed, and the critical crack length is obtained when hydraulic fracturing occurs. Then, the crack propagation path and length is obtained by inserting initial crack of different lengths at different elevation. The results indicate that hydraulic fracturing will not occur without the permeable weak surface (initial crack). The critical initial crack length required for hydraulic fracturing is 5.3 m of the calculation model in this paper. The propagation length decreases with the increase of elevation, and the average propagation length decreases from 9.4 m to 3.4 m. Furthermore, it is proved that the direction of crack propagation has a certain angle with the horizontal plane toward the downstream. Considering the up-narrow and down-wide type of the core wall, the possibility of hydraulic fracturing to penetrate the core is extremely high when the upper part of the core wall reaches the critical crack length.</description><subject>Civil engineering</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Dams</subject><subject>Earth</subject><subject>Elevation</subject><subject>Engineering</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Hydraulic fracturing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Propagation</subject><subject>Researchers</subject><subject>Rockfill dams</subject><subject>Simulation</subject><issn>1687-8086</issn><issn>1687-8094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0c1PFDEYBvCJ0USC3DybJh51oX1n-rFHg7tCgpKgnJt3-sEWZlrsdIL893QdgkdPbdpfnrfN0zTvGT1mjPMToEydMKlAKPGqOWBCyZWi6-71y16Jt83RNIWedp0EBcAOmrsf8-hyMDiQn2GcBywhRZI8OXu0GechGLLNaMqcQ7whIZIN5rIjGC25SubOh2EgX3Ek19P-fvOnuGidJdsQQ3FkM7jRxUK-u7JL9l3zxuMwuaPn9bC53m5-nZ6tLi6_nZ9-uVgZTqGsOKUtF5LDWraeC4rAjGQtVa0w0Ld8TT2I3nLoJEf0aAzlzAJvrVGU96Y9bM6XXJvwVt_nMGJ-1AmD_nuQ8o2unwhmcNpwCVwK75FC1_VdD9jbTimnmOnBqpr1ccm6z-n37Kaib9OcY32-BlpnMrlmoqrPizI5TVN2_mUqo3rfjt63o5_bqfzTwnchWnwI_9MfFu2qcR7_6Wprke0TMIqXAQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhu, Jungao</creator><creator>Chen, Shengshui</creator><creator>Fu, Zhongzhi</creator><creator>Ji, En-yue</creator><creator>Geng, Zhizhou</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4290-1942</orcidid></search><sort><creationdate>20180101</creationdate><title>Numerical Simulation of Hydraulic Fracturing in Earth and Rockfill Dam Using Extended Finite Element Method</title><author>Zhu, Jungao ; Chen, Shengshui ; Fu, Zhongzhi ; Ji, En-yue ; Geng, Zhizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Civil engineering</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Dams</topic><topic>Earth</topic><topic>Elevation</topic><topic>Engineering</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Hydraulic fracturing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Propagation</topic><topic>Researchers</topic><topic>Rockfill dams</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jungao</creatorcontrib><creatorcontrib>Chen, Shengshui</creatorcontrib><creatorcontrib>Fu, Zhongzhi</creatorcontrib><creatorcontrib>Ji, En-yue</creatorcontrib><creatorcontrib>Geng, Zhizhou</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jungao</au><au>Chen, Shengshui</au><au>Fu, Zhongzhi</au><au>Ji, En-yue</au><au>Geng, Zhizhou</au><au>Cao, Rihong</au><au>Rihong Cao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Hydraulic Fracturing in Earth and Rockfill Dam Using Extended Finite Element Method</atitle><jtitle>Advances in civil engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1687-8086</issn><eissn>1687-8094</eissn><abstract>Hydraulic fracturing is one of the most important factors affecting the safety of earth and rockfill dam. In this paper, the extended finite element method (XFEM) is used to simulate the hydraulic fracturing behavior in an actual high earth and rockfill dam. The possibility of hydraulic fracturing occurrence is analyzed, and the critical crack length is obtained when hydraulic fracturing occurs. Then, the crack propagation path and length is obtained by inserting initial crack of different lengths at different elevation. The results indicate that hydraulic fracturing will not occur without the permeable weak surface (initial crack). The critical initial crack length required for hydraulic fracturing is 5.3 m of the calculation model in this paper. The propagation length decreases with the increase of elevation, and the average propagation length decreases from 9.4 m to 3.4 m. Furthermore, it is proved that the direction of crack propagation has a certain angle with the horizontal plane toward the downstream. Considering the up-narrow and down-wide type of the core wall, the possibility of hydraulic fracturing to penetrate the core is extremely high when the upper part of the core wall reaches the critical crack length.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/1782686</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4290-1942</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8086
ispartof Advances in civil engineering, 2018-01, Vol.2018 (2018), p.1-8
issn 1687-8086
1687-8094
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c572576ffa0244b4b2abd488e81cb2d8
source Publicly Available Content Database; Wiley Open Access
subjects Civil engineering
Computer simulation
Crack propagation
Dams
Earth
Elevation
Engineering
Finite element analysis
Finite element method
Hydraulic fracturing
Mathematical analysis
Mathematical models
Methods
Numerical analysis
Propagation
Researchers
Rockfill dams
Simulation
title Numerical Simulation of Hydraulic Fracturing in Earth and Rockfill Dam Using Extended Finite Element Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Hydraulic%20Fracturing%20in%20Earth%20and%20Rockfill%20Dam%20Using%20Extended%20Finite%20Element%20Method&rft.jtitle=Advances%20in%20civil%20engineering&rft.au=Zhu,%20Jungao&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1687-8086&rft.eissn=1687-8094&rft_id=info:doi/10.1155/2018/1782686&rft_dat=%3Cproquest_doaj_%3E2025317916%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2025317916&rft_id=info:pmid/&rfr_iscdi=true