Loading…
Numerical Simulation of Hydraulic Fracturing in Earth and Rockfill Dam Using Extended Finite Element Method
Hydraulic fracturing is one of the most important factors affecting the safety of earth and rockfill dam. In this paper, the extended finite element method (XFEM) is used to simulate the hydraulic fracturing behavior in an actual high earth and rockfill dam. The possibility of hydraulic fracturing o...
Saved in:
Published in: | Advances in civil engineering 2018-01, Vol.2018 (2018), p.1-8 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3 |
container_end_page | 8 |
container_issue | 2018 |
container_start_page | 1 |
container_title | Advances in civil engineering |
container_volume | 2018 |
creator | Zhu, Jungao Chen, Shengshui Fu, Zhongzhi Ji, En-yue Geng, Zhizhou |
description | Hydraulic fracturing is one of the most important factors affecting the safety of earth and rockfill dam. In this paper, the extended finite element method (XFEM) is used to simulate the hydraulic fracturing behavior in an actual high earth and rockfill dam. The possibility of hydraulic fracturing occurrence is analyzed, and the critical crack length is obtained when hydraulic fracturing occurs. Then, the crack propagation path and length is obtained by inserting initial crack of different lengths at different elevation. The results indicate that hydraulic fracturing will not occur without the permeable weak surface (initial crack). The critical initial crack length required for hydraulic fracturing is 5.3 m of the calculation model in this paper. The propagation length decreases with the increase of elevation, and the average propagation length decreases from 9.4 m to 3.4 m. Furthermore, it is proved that the direction of crack propagation has a certain angle with the horizontal plane toward the downstream. Considering the up-narrow and down-wide type of the core wall, the possibility of hydraulic fracturing to penetrate the core is extremely high when the upper part of the core wall reaches the critical crack length. |
doi_str_mv | 10.1155/2018/1782686 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c572576ffa0244b4b2abd488e81cb2d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c572576ffa0244b4b2abd488e81cb2d8</doaj_id><sourcerecordid>2025317916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3</originalsourceid><addsrcrecordid>eNqF0c1PFDEYBvCJ0USC3DybJh51oX1n-rFHg7tCgpKgnJt3-sEWZlrsdIL893QdgkdPbdpfnrfN0zTvGT1mjPMToEydMKlAKPGqOWBCyZWi6-71y16Jt83RNIWedp0EBcAOmrsf8-hyMDiQn2GcBywhRZI8OXu0GechGLLNaMqcQ7whIZIN5rIjGC25SubOh2EgX3Ek19P-fvOnuGidJdsQQ3FkM7jRxUK-u7JL9l3zxuMwuaPn9bC53m5-nZ6tLi6_nZ9-uVgZTqGsOKUtF5LDWraeC4rAjGQtVa0w0Ld8TT2I3nLoJEf0aAzlzAJvrVGU96Y9bM6XXJvwVt_nMGJ-1AmD_nuQ8o2unwhmcNpwCVwK75FC1_VdD9jbTimnmOnBqpr1ccm6z-n37Kaib9OcY32-BlpnMrlmoqrPizI5TVN2_mUqo3rfjt63o5_bqfzTwnchWnwI_9MfFu2qcR7_6Wprke0TMIqXAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025317916</pqid></control><display><type>article</type><title>Numerical Simulation of Hydraulic Fracturing in Earth and Rockfill Dam Using Extended Finite Element Method</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Zhu, Jungao ; Chen, Shengshui ; Fu, Zhongzhi ; Ji, En-yue ; Geng, Zhizhou</creator><contributor>Cao, Rihong ; Rihong Cao</contributor><creatorcontrib>Zhu, Jungao ; Chen, Shengshui ; Fu, Zhongzhi ; Ji, En-yue ; Geng, Zhizhou ; Cao, Rihong ; Rihong Cao</creatorcontrib><description>Hydraulic fracturing is one of the most important factors affecting the safety of earth and rockfill dam. In this paper, the extended finite element method (XFEM) is used to simulate the hydraulic fracturing behavior in an actual high earth and rockfill dam. The possibility of hydraulic fracturing occurrence is analyzed, and the critical crack length is obtained when hydraulic fracturing occurs. Then, the crack propagation path and length is obtained by inserting initial crack of different lengths at different elevation. The results indicate that hydraulic fracturing will not occur without the permeable weak surface (initial crack). The critical initial crack length required for hydraulic fracturing is 5.3 m of the calculation model in this paper. The propagation length decreases with the increase of elevation, and the average propagation length decreases from 9.4 m to 3.4 m. Furthermore, it is proved that the direction of crack propagation has a certain angle with the horizontal plane toward the downstream. Considering the up-narrow and down-wide type of the core wall, the possibility of hydraulic fracturing to penetrate the core is extremely high when the upper part of the core wall reaches the critical crack length.</description><identifier>ISSN: 1687-8086</identifier><identifier>EISSN: 1687-8094</identifier><identifier>DOI: 10.1155/2018/1782686</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Civil engineering ; Computer simulation ; Crack propagation ; Dams ; Earth ; Elevation ; Engineering ; Finite element analysis ; Finite element method ; Hydraulic fracturing ; Mathematical analysis ; Mathematical models ; Methods ; Numerical analysis ; Propagation ; Researchers ; Rockfill dams ; Simulation</subject><ispartof>Advances in civil engineering, 2018-01, Vol.2018 (2018), p.1-8</ispartof><rights>Copyright © 2018 Enyue Ji et al.</rights><rights>Copyright © 2018 Enyue Ji et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3</citedby><cites>FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3</cites><orcidid>0000-0003-4290-1942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2025317916/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2025317916?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><contributor>Cao, Rihong</contributor><contributor>Rihong Cao</contributor><creatorcontrib>Zhu, Jungao</creatorcontrib><creatorcontrib>Chen, Shengshui</creatorcontrib><creatorcontrib>Fu, Zhongzhi</creatorcontrib><creatorcontrib>Ji, En-yue</creatorcontrib><creatorcontrib>Geng, Zhizhou</creatorcontrib><title>Numerical Simulation of Hydraulic Fracturing in Earth and Rockfill Dam Using Extended Finite Element Method</title><title>Advances in civil engineering</title><description>Hydraulic fracturing is one of the most important factors affecting the safety of earth and rockfill dam. In this paper, the extended finite element method (XFEM) is used to simulate the hydraulic fracturing behavior in an actual high earth and rockfill dam. The possibility of hydraulic fracturing occurrence is analyzed, and the critical crack length is obtained when hydraulic fracturing occurs. Then, the crack propagation path and length is obtained by inserting initial crack of different lengths at different elevation. The results indicate that hydraulic fracturing will not occur without the permeable weak surface (initial crack). The critical initial crack length required for hydraulic fracturing is 5.3 m of the calculation model in this paper. The propagation length decreases with the increase of elevation, and the average propagation length decreases from 9.4 m to 3.4 m. Furthermore, it is proved that the direction of crack propagation has a certain angle with the horizontal plane toward the downstream. Considering the up-narrow and down-wide type of the core wall, the possibility of hydraulic fracturing to penetrate the core is extremely high when the upper part of the core wall reaches the critical crack length.</description><subject>Civil engineering</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Dams</subject><subject>Earth</subject><subject>Elevation</subject><subject>Engineering</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Hydraulic fracturing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Propagation</subject><subject>Researchers</subject><subject>Rockfill dams</subject><subject>Simulation</subject><issn>1687-8086</issn><issn>1687-8094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0c1PFDEYBvCJ0USC3DybJh51oX1n-rFHg7tCgpKgnJt3-sEWZlrsdIL893QdgkdPbdpfnrfN0zTvGT1mjPMToEydMKlAKPGqOWBCyZWi6-71y16Jt83RNIWedp0EBcAOmrsf8-hyMDiQn2GcBywhRZI8OXu0GechGLLNaMqcQ7whIZIN5rIjGC25SubOh2EgX3Ek19P-fvOnuGidJdsQQ3FkM7jRxUK-u7JL9l3zxuMwuaPn9bC53m5-nZ6tLi6_nZ9-uVgZTqGsOKUtF5LDWraeC4rAjGQtVa0w0Ld8TT2I3nLoJEf0aAzlzAJvrVGU96Y9bM6XXJvwVt_nMGJ-1AmD_nuQ8o2unwhmcNpwCVwK75FC1_VdD9jbTimnmOnBqpr1ccm6z-n37Kaib9OcY32-BlpnMrlmoqrPizI5TVN2_mUqo3rfjt63o5_bqfzTwnchWnwI_9MfFu2qcR7_6Wprke0TMIqXAQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhu, Jungao</creator><creator>Chen, Shengshui</creator><creator>Fu, Zhongzhi</creator><creator>Ji, En-yue</creator><creator>Geng, Zhizhou</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4290-1942</orcidid></search><sort><creationdate>20180101</creationdate><title>Numerical Simulation of Hydraulic Fracturing in Earth and Rockfill Dam Using Extended Finite Element Method</title><author>Zhu, Jungao ; Chen, Shengshui ; Fu, Zhongzhi ; Ji, En-yue ; Geng, Zhizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Civil engineering</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Dams</topic><topic>Earth</topic><topic>Elevation</topic><topic>Engineering</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Hydraulic fracturing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Propagation</topic><topic>Researchers</topic><topic>Rockfill dams</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jungao</creatorcontrib><creatorcontrib>Chen, Shengshui</creatorcontrib><creatorcontrib>Fu, Zhongzhi</creatorcontrib><creatorcontrib>Ji, En-yue</creatorcontrib><creatorcontrib>Geng, Zhizhou</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jungao</au><au>Chen, Shengshui</au><au>Fu, Zhongzhi</au><au>Ji, En-yue</au><au>Geng, Zhizhou</au><au>Cao, Rihong</au><au>Rihong Cao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Hydraulic Fracturing in Earth and Rockfill Dam Using Extended Finite Element Method</atitle><jtitle>Advances in civil engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1687-8086</issn><eissn>1687-8094</eissn><abstract>Hydraulic fracturing is one of the most important factors affecting the safety of earth and rockfill dam. In this paper, the extended finite element method (XFEM) is used to simulate the hydraulic fracturing behavior in an actual high earth and rockfill dam. The possibility of hydraulic fracturing occurrence is analyzed, and the critical crack length is obtained when hydraulic fracturing occurs. Then, the crack propagation path and length is obtained by inserting initial crack of different lengths at different elevation. The results indicate that hydraulic fracturing will not occur without the permeable weak surface (initial crack). The critical initial crack length required for hydraulic fracturing is 5.3 m of the calculation model in this paper. The propagation length decreases with the increase of elevation, and the average propagation length decreases from 9.4 m to 3.4 m. Furthermore, it is proved that the direction of crack propagation has a certain angle with the horizontal plane toward the downstream. Considering the up-narrow and down-wide type of the core wall, the possibility of hydraulic fracturing to penetrate the core is extremely high when the upper part of the core wall reaches the critical crack length.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/1782686</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4290-1942</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-8086 |
ispartof | Advances in civil engineering, 2018-01, Vol.2018 (2018), p.1-8 |
issn | 1687-8086 1687-8094 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c572576ffa0244b4b2abd488e81cb2d8 |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Civil engineering Computer simulation Crack propagation Dams Earth Elevation Engineering Finite element analysis Finite element method Hydraulic fracturing Mathematical analysis Mathematical models Methods Numerical analysis Propagation Researchers Rockfill dams Simulation |
title | Numerical Simulation of Hydraulic Fracturing in Earth and Rockfill Dam Using Extended Finite Element Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Hydraulic%20Fracturing%20in%20Earth%20and%20Rockfill%20Dam%20Using%20Extended%20Finite%20Element%20Method&rft.jtitle=Advances%20in%20civil%20engineering&rft.au=Zhu,%20Jungao&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1687-8086&rft.eissn=1687-8094&rft_id=info:doi/10.1155/2018/1782686&rft_dat=%3Cproquest_doaj_%3E2025317916%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-500356752973f560a21c7130836c2b3590f26bd52475aafacc051d253dc805bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2025317916&rft_id=info:pmid/&rfr_iscdi=true |