Loading…

Impact of different cover letter content and incentives on non-response bias in a sample of Veterans applying for Department of Veterans Affairs disability benefits: a randomized, 3X2X2 factorial trial

Non-random non-response bias in surveys requires time-consuming, complicated, post-survey analyses. Our goal was to see if modifying cover letter information would prevent non-random non-response bias altogether. Our secondary goal tested whether larger incentives would reduce non-response bias. A m...

Full description

Saved in:
Bibliographic Details
Published in:BMC medical research methodology 2022-03, Vol.22 (1), p.61-13, Article 61
Main Authors: Murdoch, Maureen, Clothier, Barbara A, Beebe, Timothy J, Bangerter, Ann K, Noorbaloochi, Siamak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-random non-response bias in surveys requires time-consuming, complicated, post-survey analyses. Our goal was to see if modifying cover letter information would prevent non-random non-response bias altogether. Our secondary goal tested whether larger incentives would reduce non-response bias. A mailed, survey of 480 male and 480 female, nationally representative, Operations Enduring Freedom, Iraqi Freedom, or New Dawn (OEF/OIF/OND) Veterans applying for Department of Veterans Affairs (VA) disability benefits for posttraumatic stress disorder (PTSD). Cover letters conveyed different information about the survey's topics (combat, unwanted sexual attention, or lifetime and military experiences), how Veterans' names had been selected (list of OEF/OIF/OND Veterans or list of Veterans applying for disability benefits), and what incentive Veterans would receive ($20 or $40). The main outcome, non-response bias, measured differences between survey respondents' and sampling frame's characteristics on 8 administrative variables, including Veterans' receipt of VA disability benefits and exposure to combat or military sexual trauma. Analysis was intention to treat. We used ANOVA for factorial block-design, logistic, mixed-models to assess bias and multiple imputation and expectation-maximization algorithms to assess potential missing mechanisms (missing completely at random, missing at random, or not random) of two self-reported variables: combat and military sexual assault. Regardless of intervention, men with any VA disability benefits, women with PTSD disability benefits, and women with combat exposure were over-represented among respondents. Interventions explained 0.0 to 31.2% of men's variance and 0.6 to 30.5% of women's variance in combat non-response bias and 10.2 to 43.0% of men's variance and 0.4 to 31.9% of women's variance in military sexual trauma non-response bias. Non-random assumptions showed that men's self-reported combat exposure was overestimated by 19.0 to 28.8 percentage points and their self-reported military sexual assault exposure was underestimated by 14.2 to 28.4 percentage points compared to random missingness assumptions. Women's self-reported combat exposure was overestimated by 8.6 to 10.6 percentage points and military sexual assault exposure, by 1.2 to 6.9 percentage points. Our interventions reduced bias in some characteristics, leaving others unaffected or exacerbated. Regardless of topic, researchers are urged to present estimate
ISSN:1471-2288
1471-2288
DOI:10.1186/s12874-022-01531-x