Loading…
Facet joint degeneration—An initial procedure of the cervical spine degeneration
Objective This study aims to emphasize the initiating role of facet joint (FJ) degeneration in the process of cervical spine degeneration induced by tangential load, and we further validate it in a novel cervical spine degeneration animal model. Methods The characteristics of cervical degeneration i...
Saved in:
Published in: | JOR-spine 2023-03, Vol.6 (1), p.e1241-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objective
This study aims to emphasize the initiating role of facet joint (FJ) degeneration in the process of cervical spine degeneration induced by tangential load, and we further validate it in a novel cervical spine degeneration animal model.
Methods
The characteristics of cervical degeneration in patients of different ages were summarized through case collection. In the rat models, Hematoxylin–Eosin, Safranin O staining, and micro‐computed tomography were used to show the histopathological changes and bone fiber structure of FJ and the height of intervertebral disc (IVD) space. The ingrowth of nociceptive sensory nerve fibers was observed by immunofluorescence staining.
Results
FJ degeneration without IVDs degeneration was more common in people with cervical spondylosis in young patients. The obvious degeneration phenotypes of the FJs preceded the IVDs at the same cervical segment in our animal model. The SP+ and CGRP+ sensory nerve fibers were observed in the articular subchondral bone of degenerated FJs and porous endplates of degenerated IVDs.
Conclusion
The FJ degeneration may act as the major contributor to cervical spine degeneration in young people. The dysfunction of functional unit of spine, not a certain part of IVD tissue, results in the occurrence of cervical degeneration and neck pain.
This work reports that under the long‐term tangential load, the facet joint degeneration precedes the intervertebral disc degeneration at the same cervical segment, which may act as the major contributor to cervical spine degeneration in young people. We also established a novel cervical spine degeneration animal model, which can better mimic the cervical spine degeneration of the current young population. |
---|---|
ISSN: | 2572-1143 2572-1143 |
DOI: | 10.1002/jsp2.1241 |