Loading…

Interturn Short Fault Diagnosis Using Magnitude and Phase of Currents in Permanent Magnet Synchronous Machines

With the increased demand for permanent magnet synchronous machines (PMSMs) in various industrial fields, interturn short fault (ITSF) diagnosis of PMSMs is under the limelight. In particular, to prevent accidents caused by PMSM malfunctions, it is difficult and greatly necessary to diagnose slight...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-06, Vol.22 (12), p.4597
Main Authors: Jeong, Hyeyun, Lee, Hojin, Kim, Seongyun, Kim, Sang Woo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the increased demand for permanent magnet synchronous machines (PMSMs) in various industrial fields, interturn short fault (ITSF) diagnosis of PMSMs is under the limelight. In particular, to prevent accidents caused by PMSM malfunctions, it is difficult and greatly necessary to diagnose slight ITSF, which is a stage before the ITSF becomes severe. In this paper, we propose a novel fault indicator based on the magnitude and phase of the current. The proposed fault indicator was developed using analysis of positive-sequence current (PSC) and negative-sequence current (NSC), which means the degree of the asymmetry of the three-phase currents by ITSF. According to the analysis, as ITSF increases, the phase difference between PSC and NSC decreases and the magnitude of NSC increases. Therefore, the novel fault indicator is suggested as a product of the cosine value of the phase indicator and the magnitude indicator. The magnitude indicator is the magnitude of NSC, and the phase indicator means the phase difference between the PSC and the NSC. The suggested fault indicator diagnoses the degree of ITSF as well as slight ITSFs under various conditions by only measured three-phase currents. Experimental results demonstrate the effectiveness of our proposed method under various torque and speeds.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22124597