Loading…

Symmetries and perturbations of time-scale nonshifted singular systems

In this work, the symmetries and perturbations of time-scale nonshifted singular Lagrangian and singular nonconservative Lagrangian systems are studied. The differential equations of motion are given. The definitions and criteria of the Noether, Lie, and Mei symmetries of the two systems are present...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2023-11, Vol.13 (11), p.115317-115317-13
Main Authors: Liu, Jin, Song, Chuan-Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-fd7b7c93386289989fd022dd93870f8aac24d2c08c3cba4499ccdf4986b7d7973
cites cdi_FETCH-LOGICAL-c393t-fd7b7c93386289989fd022dd93870f8aac24d2c08c3cba4499ccdf4986b7d7973
container_end_page 115317-13
container_issue 11
container_start_page 115317
container_title AIP advances
container_volume 13
creator Liu, Jin
Song, Chuan-Jing
description In this work, the symmetries and perturbations of time-scale nonshifted singular Lagrangian and singular nonconservative Lagrangian systems are studied. The differential equations of motion are given. The definitions and criteria of the Noether, Lie, and Mei symmetries of the two systems are presented, along with the corresponding conserved quantities deduced from these symmetries. In addition, the perturbations to each symmetry and the related adiabatic invariants are studied. Finally, examples are used to illustrate the applications of these results.
doi_str_mv 10.1063/5.0179739
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c5b37b1b268240ca8b28dc2665878cc9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c5b37b1b268240ca8b28dc2665878cc9</doaj_id><sourcerecordid>2891009277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-fd7b7c93386289989fd022dd93870f8aac24d2c08c3cba4499ccdf4986b7d7973</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgqT34DxY8KWzNx-4mOUqxWih4UM8hnzVld1OT7KH_3u0H4sl3eY9hmJk3ANwiOEewIY_1HCLKKeEXYIJRzUqCcXP5574Gs5S2cJyKI8iqCVi-77vO5uhtKmRvip2NeYhKZh_6VARXZN_ZMmnZ2qIfoS_vsjVF8v1maGUs0j5l26UbcOVkm-zsvKfgc_n8sXgt128vq8XTutSEk1w6QxXVnBDWYMY5485AjI3hhFHomJQaVwZryDTRSlYV51obV3HWKGoOn03B6qRrgtyKXfSdjHsRpBdHIMSNkDF73Vqha0WoQgo3DFdQS6YwMxo3Tc0o02OIKbg7ae1i-B5symIbhtiP8cUYDkHIMT043p9YOoaUonW_rgiKQ-uiFufWR-7DiZu0z8cK_yH_ABlVgM8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891009277</pqid></control><display><type>article</type><title>Symmetries and perturbations of time-scale nonshifted singular systems</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Jin ; Song, Chuan-Jing</creator><creatorcontrib>Liu, Jin ; Song, Chuan-Jing</creatorcontrib><description>In this work, the symmetries and perturbations of time-scale nonshifted singular Lagrangian and singular nonconservative Lagrangian systems are studied. The differential equations of motion are given. The definitions and criteria of the Noether, Lie, and Mei symmetries of the two systems are presented, along with the corresponding conserved quantities deduced from these symmetries. In addition, the perturbations to each symmetry and the related adiabatic invariants are studied. Finally, examples are used to illustrate the applications of these results.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0179739</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Differential equations ; Equations of motion ; Perturbation</subject><ispartof>AIP advances, 2023-11, Vol.13 (11), p.115317-115317-13</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-fd7b7c93386289989fd022dd93870f8aac24d2c08c3cba4499ccdf4986b7d7973</citedby><cites>FETCH-LOGICAL-c393t-fd7b7c93386289989fd022dd93870f8aac24d2c08c3cba4499ccdf4986b7d7973</cites><orcidid>0000-0002-4312-8034 ; 0009-0004-2739-1213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/5.0179739$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27867,27901,27902,76150</link.rule.ids></links><search><creatorcontrib>Liu, Jin</creatorcontrib><creatorcontrib>Song, Chuan-Jing</creatorcontrib><title>Symmetries and perturbations of time-scale nonshifted singular systems</title><title>AIP advances</title><description>In this work, the symmetries and perturbations of time-scale nonshifted singular Lagrangian and singular nonconservative Lagrangian systems are studied. The differential equations of motion are given. The definitions and criteria of the Noether, Lie, and Mei symmetries of the two systems are presented, along with the corresponding conserved quantities deduced from these symmetries. In addition, the perturbations to each symmetry and the related adiabatic invariants are studied. Finally, examples are used to illustrate the applications of these results.</description><subject>Differential equations</subject><subject>Equations of motion</subject><subject>Perturbation</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9UE1LAzEUDKJgqT34DxY8KWzNx-4mOUqxWih4UM8hnzVld1OT7KH_3u0H4sl3eY9hmJk3ANwiOEewIY_1HCLKKeEXYIJRzUqCcXP5574Gs5S2cJyKI8iqCVi-77vO5uhtKmRvip2NeYhKZh_6VARXZN_ZMmnZ2qIfoS_vsjVF8v1maGUs0j5l26UbcOVkm-zsvKfgc_n8sXgt128vq8XTutSEk1w6QxXVnBDWYMY5485AjI3hhFHomJQaVwZryDTRSlYV51obV3HWKGoOn03B6qRrgtyKXfSdjHsRpBdHIMSNkDF73Vqha0WoQgo3DFdQS6YwMxo3Tc0o02OIKbg7ae1i-B5symIbhtiP8cUYDkHIMT043p9YOoaUonW_rgiKQ-uiFufWR-7DiZu0z8cK_yH_ABlVgM8</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Liu, Jin</creator><creator>Song, Chuan-Jing</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4312-8034</orcidid><orcidid>https://orcid.org/0009-0004-2739-1213</orcidid></search><sort><creationdate>20231101</creationdate><title>Symmetries and perturbations of time-scale nonshifted singular systems</title><author>Liu, Jin ; Song, Chuan-Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-fd7b7c93386289989fd022dd93870f8aac24d2c08c3cba4499ccdf4986b7d7973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Equations of motion</topic><topic>Perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jin</creatorcontrib><creatorcontrib>Song, Chuan-Jing</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jin</au><au>Song, Chuan-Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetries and perturbations of time-scale nonshifted singular systems</atitle><jtitle>AIP advances</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>13</volume><issue>11</issue><spage>115317</spage><epage>115317-13</epage><pages>115317-115317-13</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>In this work, the symmetries and perturbations of time-scale nonshifted singular Lagrangian and singular nonconservative Lagrangian systems are studied. The differential equations of motion are given. The definitions and criteria of the Noether, Lie, and Mei symmetries of the two systems are presented, along with the corresponding conserved quantities deduced from these symmetries. In addition, the perturbations to each symmetry and the related adiabatic invariants are studied. Finally, examples are used to illustrate the applications of these results.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0179739</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4312-8034</orcidid><orcidid>https://orcid.org/0009-0004-2739-1213</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2023-11, Vol.13 (11), p.115317-115317-13
issn 2158-3226
2158-3226
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c5b37b1b268240ca8b28dc2665878cc9
source AIP Open Access Journals; Free Full-Text Journals in Chemistry
subjects Differential equations
Equations of motion
Perturbation
title Symmetries and perturbations of time-scale nonshifted singular systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetries%20and%20perturbations%20of%20time-scale%20nonshifted%20singular%20systems&rft.jtitle=AIP%20advances&rft.au=Liu,%20Jin&rft.date=2023-11-01&rft.volume=13&rft.issue=11&rft.spage=115317&rft.epage=115317-13&rft.pages=115317-115317-13&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0179739&rft_dat=%3Cproquest_doaj_%3E2891009277%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-fd7b7c93386289989fd022dd93870f8aac24d2c08c3cba4499ccdf4986b7d7973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891009277&rft_id=info:pmid/&rfr_iscdi=true