Loading…

Enhanced Conversion Efficiency of a-Si:H Thin-Film Solar Cell Using ZnO Nanorods

The surface reflectivity of a material will vary as light passes through interfaces with different refractive indices. Therefore, the optical loss and reflection of an optical-electronic component can be reduced by fabricating nanostructures on its surface. In the case of a solar cell, the presence...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2020-12, Vol.10 (12), p.1082
Main Authors: Lai, Fang-I, Yang, Jui-Fu, Hsu, Yu-Chao, Kuo, Shou-Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The surface reflectivity of a material will vary as light passes through interfaces with different refractive indices. Therefore, the optical loss and reflection of an optical-electronic component can be reduced by fabricating nanostructures on its surface. In the case of a solar cell, the presence of nanostructures can deliver many different advantages, such as decreasing the surface reflectivity, enhancing the light trapping, and increasing the efficiency of the carrier collection by providing a shorter diffusion distance for the photogenerated minority carriers. In this study, an approximately 50-nm thick seed layer was first prepared using spin coating. Zinc oxide nanorods (ZnO-NRs) were then grown using a chemical solution method (CSM). The ZnO-NRs were approximately 2 μm in height and 100 nm in diameter. After applying them to amorphous silicon (a-Si:H) solar cells, the short-circuit current density increased from 8.03 to 9.24 mA/cm2, and the photovoltaic conversion efficiency increased by 11.24%.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst10121082