Loading…

Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit

In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2024-12, Vol.14 (24), p.1985
Main Authors: Jankowski, Dawid, Wiwatowski, Kamil, Żebrowski, Michał, Pilch-Wróbel, Aleksandra, Bednarkiewicz, Artur, Maćkowski, Sebastian, Piątkowski, Dawid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c405t-81c037d03b703a982bb2ac8ec7f7655f75e5d3e851c236f6379f7ea6721c34793
container_end_page
container_issue 24
container_start_page 1985
container_title Nanomaterials (Basel, Switzerland)
container_volume 14
creator Jankowski, Dawid
Wiwatowski, Kamil
Żebrowski, Michał
Pilch-Wróbel, Aleksandra
Bednarkiewicz, Artur
Maćkowski, Sebastian
Piątkowski, Dawid
description In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow. By driving electric current only along one half of the nanowire, we created a dual-function microstructure, where one section is a resistive heater, while the other operates as a radiator. Such a combination realistically reflects the electronic circuit and its thermal behavior. We demonstrated that nanocrystals distributed around this circuit allow for remote temperature readout and enable precise monitoring of the thermal energy propagation and heat dissipation processes, which are crucial for designing and developing highly integrated electronic on-chip devices.
doi_str_mv 10.3390/nano14241985
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c5ea8032241e4893ae2fc54d388e5544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821916191</galeid><doaj_id>oai_doaj_org_article_c5ea8032241e4893ae2fc54d388e5544</doaj_id><sourcerecordid>A821916191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-81c037d03b703a982bb2ac8ec7f7655f75e5d3e851c236f6379f7ea6721c34793</originalsourceid><addsrcrecordid>eNpdkk1vGyEQhldVqyZKc-u5WqmXHuqUj2WBUxWlbhrJaXtwzwizg4O1Cy7sRvK_7zhOIqcgBIJnXpiXqar3lFxwrsmXaGOiDWuoVuJVdcqI1LNGa_r6aH1SnZeyIdg05Urwt9UJ15IpwehpVRbTECIUB3Gsf6Kay7sy2r7-ndMKSu1Trm9TDGPKIa7rJQxbyHacMtQ2dvXyDvKA9DxCXu_qb6GUsLVjSLFOvp734MYcHAK3weXkQnZTGN9Vb7ztC5w_zmfVn-_z5dWP2eLX9c3V5WLmGiLGmaKOcNkRvpKEW63YasWsU-Ckl60QXgoQHQclqGO89S2X2kuwrWTU8UZqflbdHHS7ZDdmm8Ng884kG8zDRsprY_MYXA_GCbCKcIZOQqM0t8C8E03HlQIhmga1vh60ttNqgG5vV7b9C9GXJzHcmXW6N5Si1S3Zv-bTo0JOfycooxkC2t73NkKaiuG00XgTawmiH_9DN2nKEb16oDBBQgVSFwdqbTGDEH3Cix32DobgUgQfcP9SMappiwMDPh8C8CtKyeCfn0-J2ZeTOS4nxD8cp_wMPxUP_wd9hcZ0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149721015</pqid></control><display><type>article</type><title>Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Jankowski, Dawid ; Wiwatowski, Kamil ; Żebrowski, Michał ; Pilch-Wróbel, Aleksandra ; Bednarkiewicz, Artur ; Maćkowski, Sebastian ; Piątkowski, Dawid</creator><creatorcontrib>Jankowski, Dawid ; Wiwatowski, Kamil ; Żebrowski, Michał ; Pilch-Wróbel, Aleksandra ; Bednarkiewicz, Artur ; Maćkowski, Sebastian ; Piątkowski, Dawid</creatorcontrib><description>In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow. By driving electric current only along one half of the nanowire, we created a dual-function microstructure, where one section is a resistive heater, while the other operates as a radiator. Such a combination realistically reflects the electronic circuit and its thermal behavior. We demonstrated that nanocrystals distributed around this circuit allow for remote temperature readout and enable precise monitoring of the thermal energy propagation and heat dissipation processes, which are crucial for designing and developing highly integrated electronic on-chip devices.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano14241985</identifier><identifier>PMID: 39728521</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Circuits ; Crystals ; Electric currents ; Electronic circuits ; Energy dissipation ; erbium ions ; Fluorides ; Force and energy ; Glass substrates ; Heat ; Light diffraction ; Luminescence quenching ; luminescent microscopy ; luminescent thermometry ; Microscopy ; Nanocrystals ; Nanotechnology ; Nanowires ; Photoluminescence ; Photons ; Probes ; Quantum dots ; Radiation ; Radiators ; Real time ; Remote monitoring ; Spatial discrimination ; Spatial resolution ; Temperature ; Temperature measurements ; Thermal energy ; thermal management ; Thermodynamic properties ; up-conversion nanocrystals</subject><ispartof>Nanomaterials (Basel, Switzerland), 2024-12, Vol.14 (24), p.1985</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-81c037d03b703a982bb2ac8ec7f7655f75e5d3e851c236f6379f7ea6721c34793</cites><orcidid>0000-0002-3186-6849 ; 0000-0002-6745-0482 ; 0000-0003-1991-4008 ; 0000-0003-1560-6315 ; 0000-0002-1320-5369 ; 0000-0003-4113-0365 ; 0000-0002-8748-8293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149721015/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149721015?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39728521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jankowski, Dawid</creatorcontrib><creatorcontrib>Wiwatowski, Kamil</creatorcontrib><creatorcontrib>Żebrowski, Michał</creatorcontrib><creatorcontrib>Pilch-Wróbel, Aleksandra</creatorcontrib><creatorcontrib>Bednarkiewicz, Artur</creatorcontrib><creatorcontrib>Maćkowski, Sebastian</creatorcontrib><creatorcontrib>Piątkowski, Dawid</creatorcontrib><title>Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow. By driving electric current only along one half of the nanowire, we created a dual-function microstructure, where one section is a resistive heater, while the other operates as a radiator. Such a combination realistically reflects the electronic circuit and its thermal behavior. We demonstrated that nanocrystals distributed around this circuit allow for remote temperature readout and enable precise monitoring of the thermal energy propagation and heat dissipation processes, which are crucial for designing and developing highly integrated electronic on-chip devices.</description><subject>Circuits</subject><subject>Crystals</subject><subject>Electric currents</subject><subject>Electronic circuits</subject><subject>Energy dissipation</subject><subject>erbium ions</subject><subject>Fluorides</subject><subject>Force and energy</subject><subject>Glass substrates</subject><subject>Heat</subject><subject>Light diffraction</subject><subject>Luminescence quenching</subject><subject>luminescent microscopy</subject><subject>luminescent thermometry</subject><subject>Microscopy</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Probes</subject><subject>Quantum dots</subject><subject>Radiation</subject><subject>Radiators</subject><subject>Real time</subject><subject>Remote monitoring</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Temperature</subject><subject>Temperature measurements</subject><subject>Thermal energy</subject><subject>thermal management</subject><subject>Thermodynamic properties</subject><subject>up-conversion nanocrystals</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vGyEQhldVqyZKc-u5WqmXHuqUj2WBUxWlbhrJaXtwzwizg4O1Cy7sRvK_7zhOIqcgBIJnXpiXqar3lFxwrsmXaGOiDWuoVuJVdcqI1LNGa_r6aH1SnZeyIdg05Urwt9UJ15IpwehpVRbTECIUB3Gsf6Kay7sy2r7-ndMKSu1Trm9TDGPKIa7rJQxbyHacMtQ2dvXyDvKA9DxCXu_qb6GUsLVjSLFOvp734MYcHAK3weXkQnZTGN9Vb7ztC5w_zmfVn-_z5dWP2eLX9c3V5WLmGiLGmaKOcNkRvpKEW63YasWsU-Ckl60QXgoQHQclqGO89S2X2kuwrWTU8UZqflbdHHS7ZDdmm8Ng884kG8zDRsprY_MYXA_GCbCKcIZOQqM0t8C8E03HlQIhmga1vh60ttNqgG5vV7b9C9GXJzHcmXW6N5Si1S3Zv-bTo0JOfycooxkC2t73NkKaiuG00XgTawmiH_9DN2nKEb16oDBBQgVSFwdqbTGDEH3Cix32DobgUgQfcP9SMappiwMDPh8C8CtKyeCfn0-J2ZeTOS4nxD8cp_wMPxUP_wd9hcZ0</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Jankowski, Dawid</creator><creator>Wiwatowski, Kamil</creator><creator>Żebrowski, Michał</creator><creator>Pilch-Wróbel, Aleksandra</creator><creator>Bednarkiewicz, Artur</creator><creator>Maćkowski, Sebastian</creator><creator>Piątkowski, Dawid</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3186-6849</orcidid><orcidid>https://orcid.org/0000-0002-6745-0482</orcidid><orcidid>https://orcid.org/0000-0003-1991-4008</orcidid><orcidid>https://orcid.org/0000-0003-1560-6315</orcidid><orcidid>https://orcid.org/0000-0002-1320-5369</orcidid><orcidid>https://orcid.org/0000-0003-4113-0365</orcidid><orcidid>https://orcid.org/0000-0002-8748-8293</orcidid></search><sort><creationdate>20241211</creationdate><title>Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit</title><author>Jankowski, Dawid ; Wiwatowski, Kamil ; Żebrowski, Michał ; Pilch-Wróbel, Aleksandra ; Bednarkiewicz, Artur ; Maćkowski, Sebastian ; Piątkowski, Dawid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-81c037d03b703a982bb2ac8ec7f7655f75e5d3e851c236f6379f7ea6721c34793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuits</topic><topic>Crystals</topic><topic>Electric currents</topic><topic>Electronic circuits</topic><topic>Energy dissipation</topic><topic>erbium ions</topic><topic>Fluorides</topic><topic>Force and energy</topic><topic>Glass substrates</topic><topic>Heat</topic><topic>Light diffraction</topic><topic>Luminescence quenching</topic><topic>luminescent microscopy</topic><topic>luminescent thermometry</topic><topic>Microscopy</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Probes</topic><topic>Quantum dots</topic><topic>Radiation</topic><topic>Radiators</topic><topic>Real time</topic><topic>Remote monitoring</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Temperature</topic><topic>Temperature measurements</topic><topic>Thermal energy</topic><topic>thermal management</topic><topic>Thermodynamic properties</topic><topic>up-conversion nanocrystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jankowski, Dawid</creatorcontrib><creatorcontrib>Wiwatowski, Kamil</creatorcontrib><creatorcontrib>Żebrowski, Michał</creatorcontrib><creatorcontrib>Pilch-Wróbel, Aleksandra</creatorcontrib><creatorcontrib>Bednarkiewicz, Artur</creatorcontrib><creatorcontrib>Maćkowski, Sebastian</creatorcontrib><creatorcontrib>Piątkowski, Dawid</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jankowski, Dawid</au><au>Wiwatowski, Kamil</au><au>Żebrowski, Michał</au><au>Pilch-Wróbel, Aleksandra</au><au>Bednarkiewicz, Artur</au><au>Maćkowski, Sebastian</au><au>Piątkowski, Dawid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>14</volume><issue>24</issue><spage>1985</spage><pages>1985-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow. By driving electric current only along one half of the nanowire, we created a dual-function microstructure, where one section is a resistive heater, while the other operates as a radiator. Such a combination realistically reflects the electronic circuit and its thermal behavior. We demonstrated that nanocrystals distributed around this circuit allow for remote temperature readout and enable precise monitoring of the thermal energy propagation and heat dissipation processes, which are crucial for designing and developing highly integrated electronic on-chip devices.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39728521</pmid><doi>10.3390/nano14241985</doi><orcidid>https://orcid.org/0000-0002-3186-6849</orcidid><orcidid>https://orcid.org/0000-0002-6745-0482</orcidid><orcidid>https://orcid.org/0000-0003-1991-4008</orcidid><orcidid>https://orcid.org/0000-0003-1560-6315</orcidid><orcidid>https://orcid.org/0000-0002-1320-5369</orcidid><orcidid>https://orcid.org/0000-0003-4113-0365</orcidid><orcidid>https://orcid.org/0000-0002-8748-8293</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2024-12, Vol.14 (24), p.1985
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c5ea8032241e4893ae2fc54d388e5544
source PubMed (Medline); Publicly Available Content (ProQuest)
subjects Circuits
Crystals
Electric currents
Electronic circuits
Energy dissipation
erbium ions
Fluorides
Force and energy
Glass substrates
Heat
Light diffraction
Luminescence quenching
luminescent microscopy
luminescent thermometry
Microscopy
Nanocrystals
Nanotechnology
Nanowires
Photoluminescence
Photons
Probes
Quantum dots
Radiation
Radiators
Real time
Remote monitoring
Spatial discrimination
Spatial resolution
Temperature
Temperature measurements
Thermal energy
thermal management
Thermodynamic properties
up-conversion nanocrystals
title Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Luminescent%20Nanocrystal%20Probes%20for%20Monitoring%20Temperature%20and%20Thermal%20Energy%20Dissipation%20of%20Electrical%20Microcircuit&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Jankowski,%20Dawid&rft.date=2024-12-11&rft.volume=14&rft.issue=24&rft.spage=1985&rft.pages=1985-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano14241985&rft_dat=%3Cgale_doaj_%3EA821916191%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-81c037d03b703a982bb2ac8ec7f7655f75e5d3e851c236f6379f7ea6721c34793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149721015&rft_id=info:pmid/39728521&rft_galeid=A821916191&rfr_iscdi=true