Loading…
Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit
In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2024-12, Vol.14 (24), p.1985 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-81c037d03b703a982bb2ac8ec7f7655f75e5d3e851c236f6379f7ea6721c34793 |
container_end_page | |
container_issue | 24 |
container_start_page | 1985 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 14 |
creator | Jankowski, Dawid Wiwatowski, Kamil Żebrowski, Michał Pilch-Wróbel, Aleksandra Bednarkiewicz, Artur Maćkowski, Sebastian Piątkowski, Dawid |
description | In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow. By driving electric current only along one half of the nanowire, we created a dual-function microstructure, where one section is a resistive heater, while the other operates as a radiator. Such a combination realistically reflects the electronic circuit and its thermal behavior. We demonstrated that nanocrystals distributed around this circuit allow for remote temperature readout and enable precise monitoring of the thermal energy propagation and heat dissipation processes, which are crucial for designing and developing highly integrated electronic on-chip devices. |
doi_str_mv | 10.3390/nano14241985 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c5ea8032241e4893ae2fc54d388e5544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821916191</galeid><doaj_id>oai_doaj_org_article_c5ea8032241e4893ae2fc54d388e5544</doaj_id><sourcerecordid>A821916191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-81c037d03b703a982bb2ac8ec7f7655f75e5d3e851c236f6379f7ea6721c34793</originalsourceid><addsrcrecordid>eNpdkk1vGyEQhldVqyZKc-u5WqmXHuqUj2WBUxWlbhrJaXtwzwizg4O1Cy7sRvK_7zhOIqcgBIJnXpiXqar3lFxwrsmXaGOiDWuoVuJVdcqI1LNGa_r6aH1SnZeyIdg05Urwt9UJ15IpwehpVRbTECIUB3Gsf6Kay7sy2r7-ndMKSu1Trm9TDGPKIa7rJQxbyHacMtQ2dvXyDvKA9DxCXu_qb6GUsLVjSLFOvp734MYcHAK3weXkQnZTGN9Vb7ztC5w_zmfVn-_z5dWP2eLX9c3V5WLmGiLGmaKOcNkRvpKEW63YasWsU-Ckl60QXgoQHQclqGO89S2X2kuwrWTU8UZqflbdHHS7ZDdmm8Ng884kG8zDRsprY_MYXA_GCbCKcIZOQqM0t8C8E03HlQIhmga1vh60ttNqgG5vV7b9C9GXJzHcmXW6N5Si1S3Zv-bTo0JOfycooxkC2t73NkKaiuG00XgTawmiH_9DN2nKEb16oDBBQgVSFwdqbTGDEH3Cix32DobgUgQfcP9SMappiwMDPh8C8CtKyeCfn0-J2ZeTOS4nxD8cp_wMPxUP_wd9hcZ0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149721015</pqid></control><display><type>article</type><title>Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Jankowski, Dawid ; Wiwatowski, Kamil ; Żebrowski, Michał ; Pilch-Wróbel, Aleksandra ; Bednarkiewicz, Artur ; Maćkowski, Sebastian ; Piątkowski, Dawid</creator><creatorcontrib>Jankowski, Dawid ; Wiwatowski, Kamil ; Żebrowski, Michał ; Pilch-Wróbel, Aleksandra ; Bednarkiewicz, Artur ; Maćkowski, Sebastian ; Piątkowski, Dawid</creatorcontrib><description>In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow. By driving electric current only along one half of the nanowire, we created a dual-function microstructure, where one section is a resistive heater, while the other operates as a radiator. Such a combination realistically reflects the electronic circuit and its thermal behavior. We demonstrated that nanocrystals distributed around this circuit allow for remote temperature readout and enable precise monitoring of the thermal energy propagation and heat dissipation processes, which are crucial for designing and developing highly integrated electronic on-chip devices.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano14241985</identifier><identifier>PMID: 39728521</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Circuits ; Crystals ; Electric currents ; Electronic circuits ; Energy dissipation ; erbium ions ; Fluorides ; Force and energy ; Glass substrates ; Heat ; Light diffraction ; Luminescence quenching ; luminescent microscopy ; luminescent thermometry ; Microscopy ; Nanocrystals ; Nanotechnology ; Nanowires ; Photoluminescence ; Photons ; Probes ; Quantum dots ; Radiation ; Radiators ; Real time ; Remote monitoring ; Spatial discrimination ; Spatial resolution ; Temperature ; Temperature measurements ; Thermal energy ; thermal management ; Thermodynamic properties ; up-conversion nanocrystals</subject><ispartof>Nanomaterials (Basel, Switzerland), 2024-12, Vol.14 (24), p.1985</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-81c037d03b703a982bb2ac8ec7f7655f75e5d3e851c236f6379f7ea6721c34793</cites><orcidid>0000-0002-3186-6849 ; 0000-0002-6745-0482 ; 0000-0003-1991-4008 ; 0000-0003-1560-6315 ; 0000-0002-1320-5369 ; 0000-0003-4113-0365 ; 0000-0002-8748-8293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149721015/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149721015?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39728521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jankowski, Dawid</creatorcontrib><creatorcontrib>Wiwatowski, Kamil</creatorcontrib><creatorcontrib>Żebrowski, Michał</creatorcontrib><creatorcontrib>Pilch-Wróbel, Aleksandra</creatorcontrib><creatorcontrib>Bednarkiewicz, Artur</creatorcontrib><creatorcontrib>Maćkowski, Sebastian</creatorcontrib><creatorcontrib>Piątkowski, Dawid</creatorcontrib><title>Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow. By driving electric current only along one half of the nanowire, we created a dual-function microstructure, where one section is a resistive heater, while the other operates as a radiator. Such a combination realistically reflects the electronic circuit and its thermal behavior. We demonstrated that nanocrystals distributed around this circuit allow for remote temperature readout and enable precise monitoring of the thermal energy propagation and heat dissipation processes, which are crucial for designing and developing highly integrated electronic on-chip devices.</description><subject>Circuits</subject><subject>Crystals</subject><subject>Electric currents</subject><subject>Electronic circuits</subject><subject>Energy dissipation</subject><subject>erbium ions</subject><subject>Fluorides</subject><subject>Force and energy</subject><subject>Glass substrates</subject><subject>Heat</subject><subject>Light diffraction</subject><subject>Luminescence quenching</subject><subject>luminescent microscopy</subject><subject>luminescent thermometry</subject><subject>Microscopy</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Probes</subject><subject>Quantum dots</subject><subject>Radiation</subject><subject>Radiators</subject><subject>Real time</subject><subject>Remote monitoring</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Temperature</subject><subject>Temperature measurements</subject><subject>Thermal energy</subject><subject>thermal management</subject><subject>Thermodynamic properties</subject><subject>up-conversion nanocrystals</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vGyEQhldVqyZKc-u5WqmXHuqUj2WBUxWlbhrJaXtwzwizg4O1Cy7sRvK_7zhOIqcgBIJnXpiXqar3lFxwrsmXaGOiDWuoVuJVdcqI1LNGa_r6aH1SnZeyIdg05Urwt9UJ15IpwehpVRbTECIUB3Gsf6Kay7sy2r7-ndMKSu1Trm9TDGPKIa7rJQxbyHacMtQ2dvXyDvKA9DxCXu_qb6GUsLVjSLFOvp734MYcHAK3weXkQnZTGN9Vb7ztC5w_zmfVn-_z5dWP2eLX9c3V5WLmGiLGmaKOcNkRvpKEW63YasWsU-Ckl60QXgoQHQclqGO89S2X2kuwrWTU8UZqflbdHHS7ZDdmm8Ng884kG8zDRsprY_MYXA_GCbCKcIZOQqM0t8C8E03HlQIhmga1vh60ttNqgG5vV7b9C9GXJzHcmXW6N5Si1S3Zv-bTo0JOfycooxkC2t73NkKaiuG00XgTawmiH_9DN2nKEb16oDBBQgVSFwdqbTGDEH3Cix32DobgUgQfcP9SMappiwMDPh8C8CtKyeCfn0-J2ZeTOS4nxD8cp_wMPxUP_wd9hcZ0</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Jankowski, Dawid</creator><creator>Wiwatowski, Kamil</creator><creator>Żebrowski, Michał</creator><creator>Pilch-Wróbel, Aleksandra</creator><creator>Bednarkiewicz, Artur</creator><creator>Maćkowski, Sebastian</creator><creator>Piątkowski, Dawid</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3186-6849</orcidid><orcidid>https://orcid.org/0000-0002-6745-0482</orcidid><orcidid>https://orcid.org/0000-0003-1991-4008</orcidid><orcidid>https://orcid.org/0000-0003-1560-6315</orcidid><orcidid>https://orcid.org/0000-0002-1320-5369</orcidid><orcidid>https://orcid.org/0000-0003-4113-0365</orcidid><orcidid>https://orcid.org/0000-0002-8748-8293</orcidid></search><sort><creationdate>20241211</creationdate><title>Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit</title><author>Jankowski, Dawid ; Wiwatowski, Kamil ; Żebrowski, Michał ; Pilch-Wróbel, Aleksandra ; Bednarkiewicz, Artur ; Maćkowski, Sebastian ; Piątkowski, Dawid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-81c037d03b703a982bb2ac8ec7f7655f75e5d3e851c236f6379f7ea6721c34793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuits</topic><topic>Crystals</topic><topic>Electric currents</topic><topic>Electronic circuits</topic><topic>Energy dissipation</topic><topic>erbium ions</topic><topic>Fluorides</topic><topic>Force and energy</topic><topic>Glass substrates</topic><topic>Heat</topic><topic>Light diffraction</topic><topic>Luminescence quenching</topic><topic>luminescent microscopy</topic><topic>luminescent thermometry</topic><topic>Microscopy</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Probes</topic><topic>Quantum dots</topic><topic>Radiation</topic><topic>Radiators</topic><topic>Real time</topic><topic>Remote monitoring</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Temperature</topic><topic>Temperature measurements</topic><topic>Thermal energy</topic><topic>thermal management</topic><topic>Thermodynamic properties</topic><topic>up-conversion nanocrystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jankowski, Dawid</creatorcontrib><creatorcontrib>Wiwatowski, Kamil</creatorcontrib><creatorcontrib>Żebrowski, Michał</creatorcontrib><creatorcontrib>Pilch-Wróbel, Aleksandra</creatorcontrib><creatorcontrib>Bednarkiewicz, Artur</creatorcontrib><creatorcontrib>Maćkowski, Sebastian</creatorcontrib><creatorcontrib>Piątkowski, Dawid</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jankowski, Dawid</au><au>Wiwatowski, Kamil</au><au>Żebrowski, Michał</au><au>Pilch-Wróbel, Aleksandra</au><au>Bednarkiewicz, Artur</au><au>Maćkowski, Sebastian</au><au>Piątkowski, Dawid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>14</volume><issue>24</issue><spage>1985</spage><pages>1985-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow. By driving electric current only along one half of the nanowire, we created a dual-function microstructure, where one section is a resistive heater, while the other operates as a radiator. Such a combination realistically reflects the electronic circuit and its thermal behavior. We demonstrated that nanocrystals distributed around this circuit allow for remote temperature readout and enable precise monitoring of the thermal energy propagation and heat dissipation processes, which are crucial for designing and developing highly integrated electronic on-chip devices.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39728521</pmid><doi>10.3390/nano14241985</doi><orcidid>https://orcid.org/0000-0002-3186-6849</orcidid><orcidid>https://orcid.org/0000-0002-6745-0482</orcidid><orcidid>https://orcid.org/0000-0003-1991-4008</orcidid><orcidid>https://orcid.org/0000-0003-1560-6315</orcidid><orcidid>https://orcid.org/0000-0002-1320-5369</orcidid><orcidid>https://orcid.org/0000-0003-4113-0365</orcidid><orcidid>https://orcid.org/0000-0002-8748-8293</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2024-12, Vol.14 (24), p.1985 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c5ea8032241e4893ae2fc54d388e5544 |
source | PubMed (Medline); Publicly Available Content (ProQuest) |
subjects | Circuits Crystals Electric currents Electronic circuits Energy dissipation erbium ions Fluorides Force and energy Glass substrates Heat Light diffraction Luminescence quenching luminescent microscopy luminescent thermometry Microscopy Nanocrystals Nanotechnology Nanowires Photoluminescence Photons Probes Quantum dots Radiation Radiators Real time Remote monitoring Spatial discrimination Spatial resolution Temperature Temperature measurements Thermal energy thermal management Thermodynamic properties up-conversion nanocrystals |
title | Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Luminescent%20Nanocrystal%20Probes%20for%20Monitoring%20Temperature%20and%20Thermal%20Energy%20Dissipation%20of%20Electrical%20Microcircuit&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Jankowski,%20Dawid&rft.date=2024-12-11&rft.volume=14&rft.issue=24&rft.spage=1985&rft.pages=1985-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano14241985&rft_dat=%3Cgale_doaj_%3EA821916191%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-81c037d03b703a982bb2ac8ec7f7655f75e5d3e851c236f6379f7ea6721c34793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149721015&rft_id=info:pmid/39728521&rft_galeid=A821916191&rfr_iscdi=true |