Loading…

Gene expression profiling reveals insights into infant immunological and febrile responses to group B meningococcal vaccine

Neisseria meningitidis is a major cause of meningitis and septicaemia. A MenB vaccine (4CMenB) was licensed by the European Medicines Agency in January 2013. Here we describe the blood transcriptome and proteome following infant immunisations with or without concomitant 4CMenB, to gain insight into...

Full description

Saved in:
Bibliographic Details
Published in:Molecular systems biology 2020-11, Vol.16 (11), p.e9888-n/a
Main Authors: O’Connor, Daniel, Pinto, Marta Valente, Sheerin, Dylan, Tomic, Adriana, Drury, Ruth E, Channon‐Wells, Samuel, Galal, Ushma, Dold, Christina, Robinson, Hannah, Kerridge, Simon, Plested, Emma, Hughes, Harri, Stockdale, Lisa, Sadarangani, Manish, Snape, Matthew D, Rollier, Christine S, Levin, Michael, Pollard, Andrew J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5958-9e7ee9b19fe41a630a01ed00bfaec157cecb09ae36d0038b2215122015b19fec3
cites cdi_FETCH-LOGICAL-c5958-9e7ee9b19fe41a630a01ed00bfaec157cecb09ae36d0038b2215122015b19fec3
container_end_page n/a
container_issue 11
container_start_page e9888
container_title Molecular systems biology
container_volume 16
creator O’Connor, Daniel
Pinto, Marta Valente
Sheerin, Dylan
Tomic, Adriana
Drury, Ruth E
Channon‐Wells, Samuel
Galal, Ushma
Dold, Christina
Robinson, Hannah
Kerridge, Simon
Plested, Emma
Hughes, Harri
Stockdale, Lisa
Sadarangani, Manish
Snape, Matthew D
Rollier, Christine S
Levin, Michael
Pollard, Andrew J
description Neisseria meningitidis is a major cause of meningitis and septicaemia. A MenB vaccine (4CMenB) was licensed by the European Medicines Agency in January 2013. Here we describe the blood transcriptome and proteome following infant immunisations with or without concomitant 4CMenB, to gain insight into the molecular mechanisms underlying post‐vaccination reactogenicity and immunogenicity. Infants were randomised to receive control immunisations (PCV13 and DTaP‐IPV‐Hib) with or without 4CMenB at 2 and 4 months of age. Blood gene expression and plasma proteins were measured prior to, then 4 h, 24 h, 3 days or 7 days post‐vaccination. 4CMenB vaccination was associated with increased expression of ENTPD7 and increased concentrations of 4 plasma proteins: CRP, G‐CSF, IL‐1RA and IL‐6. Post‐vaccination fever was associated with increased expression of SELL , involved in neutrophil recruitment. A murine model dissecting the vaccine components found the concomitant regimen to be associated with increased gene perturbation compared with 4CMenB vaccine alone with enhancement of pathways such as interleukin‐3, ‐5 and GM‐CSF signalling. Finally, we present transcriptomic profiles predictive of immunological and febrile responses following 4CMenB vaccine. SYNOPSIS A randomised clinical trial evaluates transcriptomic and proteomic profiles following infant concomitant 4CMenB vaccination, compared with control vaccines alone. A novel framework is provided for both understanding and predicting vaccine immunogenicity and reactogenicity. 4CMenB vaccination is associated with a distinct gene expression and plasma protein signature. Post‐vaccination fever is associated with increased expression of SELL, involved in neutrophil recruitment. Transcriptomic profiles predictive of immunological and febrile responses following 4CMenB vaccine are presented. Graphical Abstract A randomised clinical trial evaluates transcriptomic and proteomic profiles following infant concomitant 4CMenB vaccination, compared with control vaccines alone. A novel framework is provided for both understanding and predicting vaccine immunogenicity and reactogenicity.
doi_str_mv 10.15252/msb.20209888
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c614ad90749e445087cf4113cbcc4450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c614ad90749e445087cf4113cbcc4450</doaj_id><sourcerecordid>2465307499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5958-9e7ee9b19fe41a630a01ed00bfaec157cecb09ae36d0038b2215122015b19fec3</originalsourceid><addsrcrecordid>eNp9kktv1DAQgCMEoqVw5IosceGSxXachy9ItIJSqYgDcLacyST1KrGDnWyp-PM4m7ZsEeLi5zefx_YkyUtGNyznOX87hHrDKaeyqqpHyTErhUgFl_zxwfgoeRbCltKsYhV_mhxlGWdUFNVx8uscLRL8OXoMwThLRu9a0xvbEY871H0gxgbTXU3LYHKxabWdiBmG2bredQZ0T7RtSIu1Nz3GsDA6GzCQSHfezSM5JQPaqHTgYMF3GsBYfJ48aeMB-OK2P0m-f_zw7exTevnl_OLs_WUKucyrVGKJKGsmWxRMFxnVlGFDad1qBJaXgFBTqTErmuWGNecsZ5xTlu9jIDtJLlZv4_RWjd4M2t8op43aLzjfKe0nAz0qKJjQjaSlkChETqsSWsFYBjXAMo-ud6trnOsBG0A7ed0_kD7cseZKdW6nyiI6yywK3twKvPsxY5jUYAJg32uLbg6Ki4ILRlf09V_o1s3exqdaqDxbspSRSlcKvAvBY3ufDKNqXyIqloi6K5HIvzq8wT19VxMRKFbgOn7nzf9t6vPX0wPzZg0MMcZ26P_k--9UfgOrVdkb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465307499</pqid></control><display><type>article</type><title>Gene expression profiling reveals insights into infant immunological and febrile responses to group B meningococcal vaccine</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Wiley Open Access Journals</source><source>PubMed Central</source><creator>O’Connor, Daniel ; Pinto, Marta Valente ; Sheerin, Dylan ; Tomic, Adriana ; Drury, Ruth E ; Channon‐Wells, Samuel ; Galal, Ushma ; Dold, Christina ; Robinson, Hannah ; Kerridge, Simon ; Plested, Emma ; Hughes, Harri ; Stockdale, Lisa ; Sadarangani, Manish ; Snape, Matthew D ; Rollier, Christine S ; Levin, Michael ; Pollard, Andrew J</creator><creatorcontrib>O’Connor, Daniel ; Pinto, Marta Valente ; Sheerin, Dylan ; Tomic, Adriana ; Drury, Ruth E ; Channon‐Wells, Samuel ; Galal, Ushma ; Dold, Christina ; Robinson, Hannah ; Kerridge, Simon ; Plested, Emma ; Hughes, Harri ; Stockdale, Lisa ; Sadarangani, Manish ; Snape, Matthew D ; Rollier, Christine S ; Levin, Michael ; Pollard, Andrew J</creatorcontrib><description>Neisseria meningitidis is a major cause of meningitis and septicaemia. A MenB vaccine (4CMenB) was licensed by the European Medicines Agency in January 2013. Here we describe the blood transcriptome and proteome following infant immunisations with or without concomitant 4CMenB, to gain insight into the molecular mechanisms underlying post‐vaccination reactogenicity and immunogenicity. Infants were randomised to receive control immunisations (PCV13 and DTaP‐IPV‐Hib) with or without 4CMenB at 2 and 4 months of age. Blood gene expression and plasma proteins were measured prior to, then 4 h, 24 h, 3 days or 7 days post‐vaccination. 4CMenB vaccination was associated with increased expression of ENTPD7 and increased concentrations of 4 plasma proteins: CRP, G‐CSF, IL‐1RA and IL‐6. Post‐vaccination fever was associated with increased expression of SELL , involved in neutrophil recruitment. A murine model dissecting the vaccine components found the concomitant regimen to be associated with increased gene perturbation compared with 4CMenB vaccine alone with enhancement of pathways such as interleukin‐3, ‐5 and GM‐CSF signalling. Finally, we present transcriptomic profiles predictive of immunological and febrile responses following 4CMenB vaccine. SYNOPSIS A randomised clinical trial evaluates transcriptomic and proteomic profiles following infant concomitant 4CMenB vaccination, compared with control vaccines alone. A novel framework is provided for both understanding and predicting vaccine immunogenicity and reactogenicity. 4CMenB vaccination is associated with a distinct gene expression and plasma protein signature. Post‐vaccination fever is associated with increased expression of SELL, involved in neutrophil recruitment. Transcriptomic profiles predictive of immunological and febrile responses following 4CMenB vaccine are presented. Graphical Abstract A randomised clinical trial evaluates transcriptomic and proteomic profiles following infant concomitant 4CMenB vaccination, compared with control vaccines alone. A novel framework is provided for both understanding and predicting vaccine immunogenicity and reactogenicity.</description><identifier>ISSN: 1744-4292</identifier><identifier>EISSN: 1744-4292</identifier><identifier>DOI: 10.15252/msb.20209888</identifier><identifier>PMID: 33210468</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Analgesics ; Animal models ; Animals ; Babies ; Bacterial infections ; Blood ; Blood Chemical Analysis ; Cerebrospinal fluid ; Diphtheria-Tetanus-Pertussis Vaccine - adverse effects ; Diphtheria-Tetanus-Pertussis Vaccine - immunology ; EMBO19 ; EMBO23 ; Female ; Fever ; Fever - blood ; Fever - epidemiology ; Fever - etiology ; Fever - genetics ; Gene expression ; Gene Expression Profiling ; Haemophilus Vaccines - adverse effects ; Haemophilus Vaccines - immunology ; Host-Pathogen Interactions - genetics ; Host-Pathogen Interactions - immunology ; Humans ; Immunity - genetics ; Immunization ; Immunogenicity ; Immunology ; Incidence ; Infant ; Infants ; Infections ; Interleukins ; Laboratories ; Male ; Meningitis ; Meningococcal Infections - prevention &amp; control ; Meningococcal Vaccines - adverse effects ; Meningococcal Vaccines - immunology ; Mice ; Mice, Inbred C57BL ; Microarray Analysis ; Molecular modelling ; Neutrophils ; paediatrics ; Perturbation ; Plasma proteins ; Pneumococcal Vaccines - adverse effects ; Pneumococcal Vaccines - immunology ; Poliovirus Vaccine, Inactivated - adverse effects ; Poliovirus Vaccine, Inactivated - immunology ; Proteins ; Proteome - analysis ; Proteomes ; proteomics ; Public health ; Signal transduction ; systems biology ; Transcriptome ; transcriptomics ; Vaccination ; Vaccination - adverse effects ; Vaccines ; Vaccines, Conjugate - adverse effects ; Vaccines, Conjugate - immunology ; Viral infections</subject><ispartof>Molecular systems biology, 2020-11, Vol.16 (11), p.e9888-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5958-9e7ee9b19fe41a630a01ed00bfaec157cecb09ae36d0038b2215122015b19fec3</citedby><cites>FETCH-LOGICAL-c5958-9e7ee9b19fe41a630a01ed00bfaec157cecb09ae36d0038b2215122015b19fec3</cites><orcidid>0000-0002-8166-8680 ; 0000-0002-6902-9886 ; 0000-0001-9456-5712 ; 0000-0002-9712-8080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674973/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2465307499?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,25734,27905,27906,36993,36994,44571,46033,46457,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33210468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O’Connor, Daniel</creatorcontrib><creatorcontrib>Pinto, Marta Valente</creatorcontrib><creatorcontrib>Sheerin, Dylan</creatorcontrib><creatorcontrib>Tomic, Adriana</creatorcontrib><creatorcontrib>Drury, Ruth E</creatorcontrib><creatorcontrib>Channon‐Wells, Samuel</creatorcontrib><creatorcontrib>Galal, Ushma</creatorcontrib><creatorcontrib>Dold, Christina</creatorcontrib><creatorcontrib>Robinson, Hannah</creatorcontrib><creatorcontrib>Kerridge, Simon</creatorcontrib><creatorcontrib>Plested, Emma</creatorcontrib><creatorcontrib>Hughes, Harri</creatorcontrib><creatorcontrib>Stockdale, Lisa</creatorcontrib><creatorcontrib>Sadarangani, Manish</creatorcontrib><creatorcontrib>Snape, Matthew D</creatorcontrib><creatorcontrib>Rollier, Christine S</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Pollard, Andrew J</creatorcontrib><title>Gene expression profiling reveals insights into infant immunological and febrile responses to group B meningococcal vaccine</title><title>Molecular systems biology</title><addtitle>Mol Syst Biol</addtitle><addtitle>Mol Syst Biol</addtitle><description>Neisseria meningitidis is a major cause of meningitis and septicaemia. A MenB vaccine (4CMenB) was licensed by the European Medicines Agency in January 2013. Here we describe the blood transcriptome and proteome following infant immunisations with or without concomitant 4CMenB, to gain insight into the molecular mechanisms underlying post‐vaccination reactogenicity and immunogenicity. Infants were randomised to receive control immunisations (PCV13 and DTaP‐IPV‐Hib) with or without 4CMenB at 2 and 4 months of age. Blood gene expression and plasma proteins were measured prior to, then 4 h, 24 h, 3 days or 7 days post‐vaccination. 4CMenB vaccination was associated with increased expression of ENTPD7 and increased concentrations of 4 plasma proteins: CRP, G‐CSF, IL‐1RA and IL‐6. Post‐vaccination fever was associated with increased expression of SELL , involved in neutrophil recruitment. A murine model dissecting the vaccine components found the concomitant regimen to be associated with increased gene perturbation compared with 4CMenB vaccine alone with enhancement of pathways such as interleukin‐3, ‐5 and GM‐CSF signalling. Finally, we present transcriptomic profiles predictive of immunological and febrile responses following 4CMenB vaccine. SYNOPSIS A randomised clinical trial evaluates transcriptomic and proteomic profiles following infant concomitant 4CMenB vaccination, compared with control vaccines alone. A novel framework is provided for both understanding and predicting vaccine immunogenicity and reactogenicity. 4CMenB vaccination is associated with a distinct gene expression and plasma protein signature. Post‐vaccination fever is associated with increased expression of SELL, involved in neutrophil recruitment. Transcriptomic profiles predictive of immunological and febrile responses following 4CMenB vaccine are presented. Graphical Abstract A randomised clinical trial evaluates transcriptomic and proteomic profiles following infant concomitant 4CMenB vaccination, compared with control vaccines alone. A novel framework is provided for both understanding and predicting vaccine immunogenicity and reactogenicity.</description><subject>Analgesics</subject><subject>Animal models</subject><subject>Animals</subject><subject>Babies</subject><subject>Bacterial infections</subject><subject>Blood</subject><subject>Blood Chemical Analysis</subject><subject>Cerebrospinal fluid</subject><subject>Diphtheria-Tetanus-Pertussis Vaccine - adverse effects</subject><subject>Diphtheria-Tetanus-Pertussis Vaccine - immunology</subject><subject>EMBO19</subject><subject>EMBO23</subject><subject>Female</subject><subject>Fever</subject><subject>Fever - blood</subject><subject>Fever - epidemiology</subject><subject>Fever - etiology</subject><subject>Fever - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Haemophilus Vaccines - adverse effects</subject><subject>Haemophilus Vaccines - immunology</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Humans</subject><subject>Immunity - genetics</subject><subject>Immunization</subject><subject>Immunogenicity</subject><subject>Immunology</subject><subject>Incidence</subject><subject>Infant</subject><subject>Infants</subject><subject>Infections</subject><subject>Interleukins</subject><subject>Laboratories</subject><subject>Male</subject><subject>Meningitis</subject><subject>Meningococcal Infections - prevention &amp; control</subject><subject>Meningococcal Vaccines - adverse effects</subject><subject>Meningococcal Vaccines - immunology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microarray Analysis</subject><subject>Molecular modelling</subject><subject>Neutrophils</subject><subject>paediatrics</subject><subject>Perturbation</subject><subject>Plasma proteins</subject><subject>Pneumococcal Vaccines - adverse effects</subject><subject>Pneumococcal Vaccines - immunology</subject><subject>Poliovirus Vaccine, Inactivated - adverse effects</subject><subject>Poliovirus Vaccine, Inactivated - immunology</subject><subject>Proteins</subject><subject>Proteome - analysis</subject><subject>Proteomes</subject><subject>proteomics</subject><subject>Public health</subject><subject>Signal transduction</subject><subject>systems biology</subject><subject>Transcriptome</subject><subject>transcriptomics</subject><subject>Vaccination</subject><subject>Vaccination - adverse effects</subject><subject>Vaccines</subject><subject>Vaccines, Conjugate - adverse effects</subject><subject>Vaccines, Conjugate - immunology</subject><subject>Viral infections</subject><issn>1744-4292</issn><issn>1744-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAQgCMEoqVw5IosceGSxXachy9ItIJSqYgDcLacyST1KrGDnWyp-PM4m7ZsEeLi5zefx_YkyUtGNyznOX87hHrDKaeyqqpHyTErhUgFl_zxwfgoeRbCltKsYhV_mhxlGWdUFNVx8uscLRL8OXoMwThLRu9a0xvbEY871H0gxgbTXU3LYHKxabWdiBmG2bredQZ0T7RtSIu1Nz3GsDA6GzCQSHfezSM5JQPaqHTgYMF3GsBYfJ48aeMB-OK2P0m-f_zw7exTevnl_OLs_WUKucyrVGKJKGsmWxRMFxnVlGFDad1qBJaXgFBTqTErmuWGNecsZ5xTlu9jIDtJLlZv4_RWjd4M2t8op43aLzjfKe0nAz0qKJjQjaSlkChETqsSWsFYBjXAMo-ud6trnOsBG0A7ed0_kD7cseZKdW6nyiI6yywK3twKvPsxY5jUYAJg32uLbg6Ki4ILRlf09V_o1s3exqdaqDxbspSRSlcKvAvBY3ufDKNqXyIqloi6K5HIvzq8wT19VxMRKFbgOn7nzf9t6vPX0wPzZg0MMcZ26P_k--9UfgOrVdkb</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>O’Connor, Daniel</creator><creator>Pinto, Marta Valente</creator><creator>Sheerin, Dylan</creator><creator>Tomic, Adriana</creator><creator>Drury, Ruth E</creator><creator>Channon‐Wells, Samuel</creator><creator>Galal, Ushma</creator><creator>Dold, Christina</creator><creator>Robinson, Hannah</creator><creator>Kerridge, Simon</creator><creator>Plested, Emma</creator><creator>Hughes, Harri</creator><creator>Stockdale, Lisa</creator><creator>Sadarangani, Manish</creator><creator>Snape, Matthew D</creator><creator>Rollier, Christine S</creator><creator>Levin, Michael</creator><creator>Pollard, Andrew J</creator><general>Nature Publishing Group UK</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><general>Springer Nature</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8166-8680</orcidid><orcidid>https://orcid.org/0000-0002-6902-9886</orcidid><orcidid>https://orcid.org/0000-0001-9456-5712</orcidid><orcidid>https://orcid.org/0000-0002-9712-8080</orcidid></search><sort><creationdate>202011</creationdate><title>Gene expression profiling reveals insights into infant immunological and febrile responses to group B meningococcal vaccine</title><author>O’Connor, Daniel ; Pinto, Marta Valente ; Sheerin, Dylan ; Tomic, Adriana ; Drury, Ruth E ; Channon‐Wells, Samuel ; Galal, Ushma ; Dold, Christina ; Robinson, Hannah ; Kerridge, Simon ; Plested, Emma ; Hughes, Harri ; Stockdale, Lisa ; Sadarangani, Manish ; Snape, Matthew D ; Rollier, Christine S ; Levin, Michael ; Pollard, Andrew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5958-9e7ee9b19fe41a630a01ed00bfaec157cecb09ae36d0038b2215122015b19fec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analgesics</topic><topic>Animal models</topic><topic>Animals</topic><topic>Babies</topic><topic>Bacterial infections</topic><topic>Blood</topic><topic>Blood Chemical Analysis</topic><topic>Cerebrospinal fluid</topic><topic>Diphtheria-Tetanus-Pertussis Vaccine - adverse effects</topic><topic>Diphtheria-Tetanus-Pertussis Vaccine - immunology</topic><topic>EMBO19</topic><topic>EMBO23</topic><topic>Female</topic><topic>Fever</topic><topic>Fever - blood</topic><topic>Fever - epidemiology</topic><topic>Fever - etiology</topic><topic>Fever - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Haemophilus Vaccines - adverse effects</topic><topic>Haemophilus Vaccines - immunology</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Humans</topic><topic>Immunity - genetics</topic><topic>Immunization</topic><topic>Immunogenicity</topic><topic>Immunology</topic><topic>Incidence</topic><topic>Infant</topic><topic>Infants</topic><topic>Infections</topic><topic>Interleukins</topic><topic>Laboratories</topic><topic>Male</topic><topic>Meningitis</topic><topic>Meningococcal Infections - prevention &amp; control</topic><topic>Meningococcal Vaccines - adverse effects</topic><topic>Meningococcal Vaccines - immunology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microarray Analysis</topic><topic>Molecular modelling</topic><topic>Neutrophils</topic><topic>paediatrics</topic><topic>Perturbation</topic><topic>Plasma proteins</topic><topic>Pneumococcal Vaccines - adverse effects</topic><topic>Pneumococcal Vaccines - immunology</topic><topic>Poliovirus Vaccine, Inactivated - adverse effects</topic><topic>Poliovirus Vaccine, Inactivated - immunology</topic><topic>Proteins</topic><topic>Proteome - analysis</topic><topic>Proteomes</topic><topic>proteomics</topic><topic>Public health</topic><topic>Signal transduction</topic><topic>systems biology</topic><topic>Transcriptome</topic><topic>transcriptomics</topic><topic>Vaccination</topic><topic>Vaccination - adverse effects</topic><topic>Vaccines</topic><topic>Vaccines, Conjugate - adverse effects</topic><topic>Vaccines, Conjugate - immunology</topic><topic>Viral infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Connor, Daniel</creatorcontrib><creatorcontrib>Pinto, Marta Valente</creatorcontrib><creatorcontrib>Sheerin, Dylan</creatorcontrib><creatorcontrib>Tomic, Adriana</creatorcontrib><creatorcontrib>Drury, Ruth E</creatorcontrib><creatorcontrib>Channon‐Wells, Samuel</creatorcontrib><creatorcontrib>Galal, Ushma</creatorcontrib><creatorcontrib>Dold, Christina</creatorcontrib><creatorcontrib>Robinson, Hannah</creatorcontrib><creatorcontrib>Kerridge, Simon</creatorcontrib><creatorcontrib>Plested, Emma</creatorcontrib><creatorcontrib>Hughes, Harri</creatorcontrib><creatorcontrib>Stockdale, Lisa</creatorcontrib><creatorcontrib>Sadarangani, Manish</creatorcontrib><creatorcontrib>Snape, Matthew D</creatorcontrib><creatorcontrib>Rollier, Christine S</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Pollard, Andrew J</creatorcontrib><collection>SpringerOpen</collection><collection>Wiley Open Access Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Connor, Daniel</au><au>Pinto, Marta Valente</au><au>Sheerin, Dylan</au><au>Tomic, Adriana</au><au>Drury, Ruth E</au><au>Channon‐Wells, Samuel</au><au>Galal, Ushma</au><au>Dold, Christina</au><au>Robinson, Hannah</au><au>Kerridge, Simon</au><au>Plested, Emma</au><au>Hughes, Harri</au><au>Stockdale, Lisa</au><au>Sadarangani, Manish</au><au>Snape, Matthew D</au><au>Rollier, Christine S</au><au>Levin, Michael</au><au>Pollard, Andrew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression profiling reveals insights into infant immunological and febrile responses to group B meningococcal vaccine</atitle><jtitle>Molecular systems biology</jtitle><stitle>Mol Syst Biol</stitle><addtitle>Mol Syst Biol</addtitle><date>2020-11</date><risdate>2020</risdate><volume>16</volume><issue>11</issue><spage>e9888</spage><epage>n/a</epage><pages>e9888-n/a</pages><issn>1744-4292</issn><eissn>1744-4292</eissn><abstract>Neisseria meningitidis is a major cause of meningitis and septicaemia. A MenB vaccine (4CMenB) was licensed by the European Medicines Agency in January 2013. Here we describe the blood transcriptome and proteome following infant immunisations with or without concomitant 4CMenB, to gain insight into the molecular mechanisms underlying post‐vaccination reactogenicity and immunogenicity. Infants were randomised to receive control immunisations (PCV13 and DTaP‐IPV‐Hib) with or without 4CMenB at 2 and 4 months of age. Blood gene expression and plasma proteins were measured prior to, then 4 h, 24 h, 3 days or 7 days post‐vaccination. 4CMenB vaccination was associated with increased expression of ENTPD7 and increased concentrations of 4 plasma proteins: CRP, G‐CSF, IL‐1RA and IL‐6. Post‐vaccination fever was associated with increased expression of SELL , involved in neutrophil recruitment. A murine model dissecting the vaccine components found the concomitant regimen to be associated with increased gene perturbation compared with 4CMenB vaccine alone with enhancement of pathways such as interleukin‐3, ‐5 and GM‐CSF signalling. Finally, we present transcriptomic profiles predictive of immunological and febrile responses following 4CMenB vaccine. SYNOPSIS A randomised clinical trial evaluates transcriptomic and proteomic profiles following infant concomitant 4CMenB vaccination, compared with control vaccines alone. A novel framework is provided for both understanding and predicting vaccine immunogenicity and reactogenicity. 4CMenB vaccination is associated with a distinct gene expression and plasma protein signature. Post‐vaccination fever is associated with increased expression of SELL, involved in neutrophil recruitment. Transcriptomic profiles predictive of immunological and febrile responses following 4CMenB vaccine are presented. Graphical Abstract A randomised clinical trial evaluates transcriptomic and proteomic profiles following infant concomitant 4CMenB vaccination, compared with control vaccines alone. A novel framework is provided for both understanding and predicting vaccine immunogenicity and reactogenicity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33210468</pmid><doi>10.15252/msb.20209888</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8166-8680</orcidid><orcidid>https://orcid.org/0000-0002-6902-9886</orcidid><orcidid>https://orcid.org/0000-0001-9456-5712</orcidid><orcidid>https://orcid.org/0000-0002-9712-8080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-4292
ispartof Molecular systems biology, 2020-11, Vol.16 (11), p.e9888-n/a
issn 1744-4292
1744-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c614ad90749e445087cf4113cbcc4450
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Wiley Open Access Journals; PubMed Central
subjects Analgesics
Animal models
Animals
Babies
Bacterial infections
Blood
Blood Chemical Analysis
Cerebrospinal fluid
Diphtheria-Tetanus-Pertussis Vaccine - adverse effects
Diphtheria-Tetanus-Pertussis Vaccine - immunology
EMBO19
EMBO23
Female
Fever
Fever - blood
Fever - epidemiology
Fever - etiology
Fever - genetics
Gene expression
Gene Expression Profiling
Haemophilus Vaccines - adverse effects
Haemophilus Vaccines - immunology
Host-Pathogen Interactions - genetics
Host-Pathogen Interactions - immunology
Humans
Immunity - genetics
Immunization
Immunogenicity
Immunology
Incidence
Infant
Infants
Infections
Interleukins
Laboratories
Male
Meningitis
Meningococcal Infections - prevention & control
Meningococcal Vaccines - adverse effects
Meningococcal Vaccines - immunology
Mice
Mice, Inbred C57BL
Microarray Analysis
Molecular modelling
Neutrophils
paediatrics
Perturbation
Plasma proteins
Pneumococcal Vaccines - adverse effects
Pneumococcal Vaccines - immunology
Poliovirus Vaccine, Inactivated - adverse effects
Poliovirus Vaccine, Inactivated - immunology
Proteins
Proteome - analysis
Proteomes
proteomics
Public health
Signal transduction
systems biology
Transcriptome
transcriptomics
Vaccination
Vaccination - adverse effects
Vaccines
Vaccines, Conjugate - adverse effects
Vaccines, Conjugate - immunology
Viral infections
title Gene expression profiling reveals insights into infant immunological and febrile responses to group B meningococcal vaccine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20profiling%20reveals%20insights%20into%20infant%20immunological%20and%20febrile%20responses%20to%20group%20B%20meningococcal%20vaccine&rft.jtitle=Molecular%20systems%20biology&rft.au=O%E2%80%99Connor,%20Daniel&rft.date=2020-11&rft.volume=16&rft.issue=11&rft.spage=e9888&rft.epage=n/a&rft.pages=e9888-n/a&rft.issn=1744-4292&rft.eissn=1744-4292&rft_id=info:doi/10.15252/msb.20209888&rft_dat=%3Cproquest_doaj_%3E2465307499%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5958-9e7ee9b19fe41a630a01ed00bfaec157cecb09ae36d0038b2215122015b19fec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465307499&rft_id=info:pmid/33210468&rfr_iscdi=true