Loading…

Comparing microRNA in milk small extracellular vesicles among healthy cattle and cattle at high risk for bovine leukemia virus transmission

Enzootic bovine leukosis (EBL) is a B-cell lymphosarcoma caused by bovine leukemia virus (BLV) infection. In Japan, cattle diagnosed with EBL are not permitted for human consumption by the law, thereby causing serious economic losses to farmers. The prevalence of BLV is high in Japan (40.9% in dairy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2022-06, Vol.105 (6), p.5370-5380
Main Authors: Nakanishi, Ryoka, Takashima, Shigeo, Wakihara, Yoshiko, Kamatari, Yuji O., Kitamura, Yuko, Shimizu, Kaori, Okada, Ayaka, Inoshima, Yasuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enzootic bovine leukosis (EBL) is a B-cell lymphosarcoma caused by bovine leukemia virus (BLV) infection. In Japan, cattle diagnosed with EBL are not permitted for human consumption by the law, thereby causing serious economic losses to farmers. The prevalence of BLV is high in Japan (40.9% in dairy cattle and 28.7% in beef cattle, respectively), which makes it difficult to perform the test-and-slaughter of BLV-infected cattle. This necessitates preventing the spread of BLV infection in cattle by early detection, segregation, and the removal of BLV-infected cattle with high proviral load, which are considered high risk for BLV transmission. We aimed to identify cattle that were at high risk for BLV transmission by comparing microRNA (miRNA) profiles in milk small extracellular vesicles (sEV). At first, miRNA profiles in sEV were compared among 4 uninfected cattle and 4 BLV-infected cattle with high proviral load by using a microarray containing mixed probes for miRNA of cattle and humans. Significantly lower amounts of hsa-miR-557 and hsa-miR-19b-1-5p, and insignificantly but higher amounts of hsa-miR-424-5p were observed in milk sEV from BLV-infected cattle than those from uninfected cattle. Next, to evaluate the utility of the aforementioned miRNAs for the identification of cattle that were at high risk for BLV transmission, we performed quantitative real-time PCR using milk sEV newly collected from 5 uninfected cattle and 17 BLV-infected cattle with high proviral load. The cycle threshold value of hsa-miR-424-5p was significantly lower in milk sEV from BLV-infected cattle. The PCR detection was unavailable or a significant difference was not observed for hsa-miR-557 and hsa-miR-19b-1-5p, respectively. These results suggest that the amount of hsa-miR-424-5p was higher in milk sEV from BLV-infected cattle and increasing the hsa-miR-424-5p in milk sEV could be one of the characteristic trends in cattle that are high risk for BLV transmission. Moreover, assessing characteristic miRNA amounts in milk sEV, which can be recovered twice a day by milking, could be useful for the routine monitoring of cattle in dairy herds instead of blood collection.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2021-20989