Loading…
Computation Offloading and Resource Allocation for the Internet of Things in Energy-constrained MEC-enabled HetNets
In this paper, we present our investigation of a latency-minimization offloading problem for internet of things (IoT) terminals in multiple access edge computing (MEC)-enabled heterogeneous networks (HetNets), which jointly optimizes computation and communication resource allocation. Different from...
Saved in:
Published in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Tang, Liangrui Hu, Hailin |
description | In this paper, we present our investigation of a latency-minimization offloading problem for internet of things (IoT) terminals in multiple access edge computing (MEC)-enabled heterogeneous networks (HetNets), which jointly optimizes computation and communication resource allocation. Different from related works, the inter-user interferences caused by computation offloading demonstrate effective management in this paper. We also consider the limited battery capacity for IoT terminals for an energy-limited network. Then, we formulate a joint computation offloading and resource allocation optimization problem to minimize the weight-sum delay of users under the constraint of inter-user interference and energy consumption. Since the problem we formulated is a mixed integer non-linear programming (MINLP) problem, the optimal solution can't be easily obtained. Thus, we decompose the problem into multiple sub-problems. First, we obtain the optimal close solution for local CPU frequencies for each user. Then we propose a low complexity algorithm by using the CVX tool and the successive convex approximation approach (SCA). Finally, we propose a distributed computation offloading algorithm. The simulation results compare the performance of the proposed offloading scheme with different algorithms. We also analyze the influence of network parameters on the network latency and obtain some interesting conclusions. |
doi_str_mv | 10.1109/ACCESS.2020.2979774 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c65594c656584e2baeb5416d2c28ffd9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9031324</ieee_id><doaj_id>oai_doaj_org_article_c65594c656584e2baeb5416d2c28ffd9</doaj_id><sourcerecordid>2454732709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaGFhiS_IBdBzt7qW9ZxMdtmIR_QpGchy6ONF0faStpD_n21cQiZw8wwvPdmmNc01wSvCMH657rvN09PK4opXlGttFL8rDmnROqWCSa_fel_NFc573GNro6EOm9yH18Px2LLFAN69H6OdpzCDtkwoj-Q4zE5QOt5jm6B-JhQeQG0DQVSgIKiR88vlZHRFNAmQNq9tS6GXJKdAozoftO3EOww1_4WygOUfNl893bOcPVRL5q_vzbP_W179_h726_vWsdxV1oiNBnEiL3jXkmhhdPeD3hww6A4ENIRC9aPTkpqNRDlPfFCUt1h5zSTnF0020V3jHZvDml6tenNRDuZ90FMO2NTmdwMxkkhNK9Zio4DHSwMghM5Ukc770ddtW4WrUOK_46Qi9nX34R6vqFccMWowicUW1AuxZwT-M-tBJuTWWYxy5zMMh9mVdb1wpoA4JOhMSOMcvYfyRaRKw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454732709</pqid></control><display><type>article</type><title>Computation Offloading and Resource Allocation for the Internet of Things in Energy-constrained MEC-enabled HetNets</title><source>IEEE Xplore Open Access Journals</source><creator>Tang, Liangrui ; Hu, Hailin</creator><creatorcontrib>Tang, Liangrui ; Hu, Hailin</creatorcontrib><description>In this paper, we present our investigation of a latency-minimization offloading problem for internet of things (IoT) terminals in multiple access edge computing (MEC)-enabled heterogeneous networks (HetNets), which jointly optimizes computation and communication resource allocation. Different from related works, the inter-user interferences caused by computation offloading demonstrate effective management in this paper. We also consider the limited battery capacity for IoT terminals for an energy-limited network. Then, we formulate a joint computation offloading and resource allocation optimization problem to minimize the weight-sum delay of users under the constraint of inter-user interference and energy consumption. Since the problem we formulated is a mixed integer non-linear programming (MINLP) problem, the optimal solution can't be easily obtained. Thus, we decompose the problem into multiple sub-problems. First, we obtain the optimal close solution for local CPU frequencies for each user. Then we propose a low complexity algorithm by using the CVX tool and the successive convex approximation approach (SCA). Finally, we propose a distributed computation offloading algorithm. The simulation results compare the performance of the proposed offloading scheme with different algorithms. We also analyze the influence of network parameters on the network latency and obtain some interesting conclusions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2979774</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computation offloading ; Constraints ; Edge computing ; Energy consumption ; Energy limitation ; Internet of Things ; Linear programming ; MEC enabled HetNets ; Mixed integer ; Network latency ; Nonlinear programming ; Optimization ; Resource allocation ; Terminals</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643</citedby><cites>FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643</cites><orcidid>0000-0002-0874-240X ; 0000-0002-9674-9889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9031324$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Tang, Liangrui</creatorcontrib><creatorcontrib>Hu, Hailin</creatorcontrib><title>Computation Offloading and Resource Allocation for the Internet of Things in Energy-constrained MEC-enabled HetNets</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we present our investigation of a latency-minimization offloading problem for internet of things (IoT) terminals in multiple access edge computing (MEC)-enabled heterogeneous networks (HetNets), which jointly optimizes computation and communication resource allocation. Different from related works, the inter-user interferences caused by computation offloading demonstrate effective management in this paper. We also consider the limited battery capacity for IoT terminals for an energy-limited network. Then, we formulate a joint computation offloading and resource allocation optimization problem to minimize the weight-sum delay of users under the constraint of inter-user interference and energy consumption. Since the problem we formulated is a mixed integer non-linear programming (MINLP) problem, the optimal solution can't be easily obtained. Thus, we decompose the problem into multiple sub-problems. First, we obtain the optimal close solution for local CPU frequencies for each user. Then we propose a low complexity algorithm by using the CVX tool and the successive convex approximation approach (SCA). Finally, we propose a distributed computation offloading algorithm. The simulation results compare the performance of the proposed offloading scheme with different algorithms. We also analyze the influence of network parameters on the network latency and obtain some interesting conclusions.</description><subject>Algorithms</subject><subject>Computation offloading</subject><subject>Constraints</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy limitation</subject><subject>Internet of Things</subject><subject>Linear programming</subject><subject>MEC enabled HetNets</subject><subject>Mixed integer</subject><subject>Network latency</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Terminals</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaGFhiS_IBdBzt7qW9ZxMdtmIR_QpGchy6ONF0faStpD_n21cQiZw8wwvPdmmNc01wSvCMH657rvN09PK4opXlGttFL8rDmnROqWCSa_fel_NFc573GNro6EOm9yH18Px2LLFAN69H6OdpzCDtkwoj-Q4zE5QOt5jm6B-JhQeQG0DQVSgIKiR88vlZHRFNAmQNq9tS6GXJKdAozoftO3EOww1_4WygOUfNl893bOcPVRL5q_vzbP_W179_h726_vWsdxV1oiNBnEiL3jXkmhhdPeD3hww6A4ENIRC9aPTkpqNRDlPfFCUt1h5zSTnF0020V3jHZvDml6tenNRDuZ90FMO2NTmdwMxkkhNK9Zio4DHSwMghM5Ukc770ddtW4WrUOK_46Qi9nX34R6vqFccMWowicUW1AuxZwT-M-tBJuTWWYxy5zMMh9mVdb1wpoA4JOhMSOMcvYfyRaRKw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Tang, Liangrui</creator><creator>Hu, Hailin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0874-240X</orcidid><orcidid>https://orcid.org/0000-0002-9674-9889</orcidid></search><sort><creationdate>20200101</creationdate><title>Computation Offloading and Resource Allocation for the Internet of Things in Energy-constrained MEC-enabled HetNets</title><author>Tang, Liangrui ; Hu, Hailin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computation offloading</topic><topic>Constraints</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy limitation</topic><topic>Internet of Things</topic><topic>Linear programming</topic><topic>MEC enabled HetNets</topic><topic>Mixed integer</topic><topic>Network latency</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Terminals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Liangrui</creatorcontrib><creatorcontrib>Hu, Hailin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Liangrui</au><au>Hu, Hailin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation Offloading and Resource Allocation for the Internet of Things in Energy-constrained MEC-enabled HetNets</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we present our investigation of a latency-minimization offloading problem for internet of things (IoT) terminals in multiple access edge computing (MEC)-enabled heterogeneous networks (HetNets), which jointly optimizes computation and communication resource allocation. Different from related works, the inter-user interferences caused by computation offloading demonstrate effective management in this paper. We also consider the limited battery capacity for IoT terminals for an energy-limited network. Then, we formulate a joint computation offloading and resource allocation optimization problem to minimize the weight-sum delay of users under the constraint of inter-user interference and energy consumption. Since the problem we formulated is a mixed integer non-linear programming (MINLP) problem, the optimal solution can't be easily obtained. Thus, we decompose the problem into multiple sub-problems. First, we obtain the optimal close solution for local CPU frequencies for each user. Then we propose a low complexity algorithm by using the CVX tool and the successive convex approximation approach (SCA). Finally, we propose a distributed computation offloading algorithm. The simulation results compare the performance of the proposed offloading scheme with different algorithms. We also analyze the influence of network parameters on the network latency and obtain some interesting conclusions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2979774</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0874-240X</orcidid><orcidid>https://orcid.org/0000-0002-9674-9889</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c65594c656584e2baeb5416d2c28ffd9 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Computation offloading Constraints Edge computing Energy consumption Energy limitation Internet of Things Linear programming MEC enabled HetNets Mixed integer Network latency Nonlinear programming Optimization Resource allocation Terminals |
title | Computation Offloading and Resource Allocation for the Internet of Things in Energy-constrained MEC-enabled HetNets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20Offloading%20and%20Resource%20Allocation%20for%20the%20Internet%20of%20Things%20in%20Energy-constrained%20MEC-enabled%20HetNets&rft.jtitle=IEEE%20access&rft.au=Tang,%20Liangrui&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2979774&rft_dat=%3Cproquest_doaj_%3E2454732709%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454732709&rft_id=info:pmid/&rft_ieee_id=9031324&rfr_iscdi=true |