Loading…

Computation Offloading and Resource Allocation for the Internet of Things in Energy-constrained MEC-enabled HetNets

In this paper, we present our investigation of a latency-minimization offloading problem for internet of things (IoT) terminals in multiple access edge computing (MEC)-enabled heterogeneous networks (HetNets), which jointly optimizes computation and communication resource allocation. Different from...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020-01, Vol.8, p.1-1
Main Authors: Tang, Liangrui, Hu, Hailin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643
cites cdi_FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Tang, Liangrui
Hu, Hailin
description In this paper, we present our investigation of a latency-minimization offloading problem for internet of things (IoT) terminals in multiple access edge computing (MEC)-enabled heterogeneous networks (HetNets), which jointly optimizes computation and communication resource allocation. Different from related works, the inter-user interferences caused by computation offloading demonstrate effective management in this paper. We also consider the limited battery capacity for IoT terminals for an energy-limited network. Then, we formulate a joint computation offloading and resource allocation optimization problem to minimize the weight-sum delay of users under the constraint of inter-user interference and energy consumption. Since the problem we formulated is a mixed integer non-linear programming (MINLP) problem, the optimal solution can't be easily obtained. Thus, we decompose the problem into multiple sub-problems. First, we obtain the optimal close solution for local CPU frequencies for each user. Then we propose a low complexity algorithm by using the CVX tool and the successive convex approximation approach (SCA). Finally, we propose a distributed computation offloading algorithm. The simulation results compare the performance of the proposed offloading scheme with different algorithms. We also analyze the influence of network parameters on the network latency and obtain some interesting conclusions.
doi_str_mv 10.1109/ACCESS.2020.2979774
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c65594c656584e2baeb5416d2c28ffd9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9031324</ieee_id><doaj_id>oai_doaj_org_article_c65594c656584e2baeb5416d2c28ffd9</doaj_id><sourcerecordid>2454732709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaGFhiS_IBdBzt7qW9ZxMdtmIR_QpGchy6ONF0faStpD_n21cQiZw8wwvPdmmNc01wSvCMH657rvN09PK4opXlGttFL8rDmnROqWCSa_fel_NFc573GNro6EOm9yH18Px2LLFAN69H6OdpzCDtkwoj-Q4zE5QOt5jm6B-JhQeQG0DQVSgIKiR88vlZHRFNAmQNq9tS6GXJKdAozoftO3EOww1_4WygOUfNl893bOcPVRL5q_vzbP_W179_h726_vWsdxV1oiNBnEiL3jXkmhhdPeD3hww6A4ENIRC9aPTkpqNRDlPfFCUt1h5zSTnF0020V3jHZvDml6tenNRDuZ90FMO2NTmdwMxkkhNK9Zio4DHSwMghM5Ukc770ddtW4WrUOK_46Qi9nX34R6vqFccMWowicUW1AuxZwT-M-tBJuTWWYxy5zMMh9mVdb1wpoA4JOhMSOMcvYfyRaRKw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454732709</pqid></control><display><type>article</type><title>Computation Offloading and Resource Allocation for the Internet of Things in Energy-constrained MEC-enabled HetNets</title><source>IEEE Xplore Open Access Journals</source><creator>Tang, Liangrui ; Hu, Hailin</creator><creatorcontrib>Tang, Liangrui ; Hu, Hailin</creatorcontrib><description>In this paper, we present our investigation of a latency-minimization offloading problem for internet of things (IoT) terminals in multiple access edge computing (MEC)-enabled heterogeneous networks (HetNets), which jointly optimizes computation and communication resource allocation. Different from related works, the inter-user interferences caused by computation offloading demonstrate effective management in this paper. We also consider the limited battery capacity for IoT terminals for an energy-limited network. Then, we formulate a joint computation offloading and resource allocation optimization problem to minimize the weight-sum delay of users under the constraint of inter-user interference and energy consumption. Since the problem we formulated is a mixed integer non-linear programming (MINLP) problem, the optimal solution can't be easily obtained. Thus, we decompose the problem into multiple sub-problems. First, we obtain the optimal close solution for local CPU frequencies for each user. Then we propose a low complexity algorithm by using the CVX tool and the successive convex approximation approach (SCA). Finally, we propose a distributed computation offloading algorithm. The simulation results compare the performance of the proposed offloading scheme with different algorithms. We also analyze the influence of network parameters on the network latency and obtain some interesting conclusions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2979774</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computation offloading ; Constraints ; Edge computing ; Energy consumption ; Energy limitation ; Internet of Things ; Linear programming ; MEC enabled HetNets ; Mixed integer ; Network latency ; Nonlinear programming ; Optimization ; Resource allocation ; Terminals</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643</citedby><cites>FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643</cites><orcidid>0000-0002-0874-240X ; 0000-0002-9674-9889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9031324$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Tang, Liangrui</creatorcontrib><creatorcontrib>Hu, Hailin</creatorcontrib><title>Computation Offloading and Resource Allocation for the Internet of Things in Energy-constrained MEC-enabled HetNets</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we present our investigation of a latency-minimization offloading problem for internet of things (IoT) terminals in multiple access edge computing (MEC)-enabled heterogeneous networks (HetNets), which jointly optimizes computation and communication resource allocation. Different from related works, the inter-user interferences caused by computation offloading demonstrate effective management in this paper. We also consider the limited battery capacity for IoT terminals for an energy-limited network. Then, we formulate a joint computation offloading and resource allocation optimization problem to minimize the weight-sum delay of users under the constraint of inter-user interference and energy consumption. Since the problem we formulated is a mixed integer non-linear programming (MINLP) problem, the optimal solution can't be easily obtained. Thus, we decompose the problem into multiple sub-problems. First, we obtain the optimal close solution for local CPU frequencies for each user. Then we propose a low complexity algorithm by using the CVX tool and the successive convex approximation approach (SCA). Finally, we propose a distributed computation offloading algorithm. The simulation results compare the performance of the proposed offloading scheme with different algorithms. We also analyze the influence of network parameters on the network latency and obtain some interesting conclusions.</description><subject>Algorithms</subject><subject>Computation offloading</subject><subject>Constraints</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy limitation</subject><subject>Internet of Things</subject><subject>Linear programming</subject><subject>MEC enabled HetNets</subject><subject>Mixed integer</subject><subject>Network latency</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Terminals</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaGFhiS_IBdBzt7qW9ZxMdtmIR_QpGchy6ONF0faStpD_n21cQiZw8wwvPdmmNc01wSvCMH657rvN09PK4opXlGttFL8rDmnROqWCSa_fel_NFc573GNro6EOm9yH18Px2LLFAN69H6OdpzCDtkwoj-Q4zE5QOt5jm6B-JhQeQG0DQVSgIKiR88vlZHRFNAmQNq9tS6GXJKdAozoftO3EOww1_4WygOUfNl893bOcPVRL5q_vzbP_W179_h726_vWsdxV1oiNBnEiL3jXkmhhdPeD3hww6A4ENIRC9aPTkpqNRDlPfFCUt1h5zSTnF0020V3jHZvDml6tenNRDuZ90FMO2NTmdwMxkkhNK9Zio4DHSwMghM5Ukc770ddtW4WrUOK_46Qi9nX34R6vqFccMWowicUW1AuxZwT-M-tBJuTWWYxy5zMMh9mVdb1wpoA4JOhMSOMcvYfyRaRKw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Tang, Liangrui</creator><creator>Hu, Hailin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0874-240X</orcidid><orcidid>https://orcid.org/0000-0002-9674-9889</orcidid></search><sort><creationdate>20200101</creationdate><title>Computation Offloading and Resource Allocation for the Internet of Things in Energy-constrained MEC-enabled HetNets</title><author>Tang, Liangrui ; Hu, Hailin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computation offloading</topic><topic>Constraints</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy limitation</topic><topic>Internet of Things</topic><topic>Linear programming</topic><topic>MEC enabled HetNets</topic><topic>Mixed integer</topic><topic>Network latency</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Terminals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Liangrui</creatorcontrib><creatorcontrib>Hu, Hailin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Liangrui</au><au>Hu, Hailin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation Offloading and Resource Allocation for the Internet of Things in Energy-constrained MEC-enabled HetNets</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we present our investigation of a latency-minimization offloading problem for internet of things (IoT) terminals in multiple access edge computing (MEC)-enabled heterogeneous networks (HetNets), which jointly optimizes computation and communication resource allocation. Different from related works, the inter-user interferences caused by computation offloading demonstrate effective management in this paper. We also consider the limited battery capacity for IoT terminals for an energy-limited network. Then, we formulate a joint computation offloading and resource allocation optimization problem to minimize the weight-sum delay of users under the constraint of inter-user interference and energy consumption. Since the problem we formulated is a mixed integer non-linear programming (MINLP) problem, the optimal solution can't be easily obtained. Thus, we decompose the problem into multiple sub-problems. First, we obtain the optimal close solution for local CPU frequencies for each user. Then we propose a low complexity algorithm by using the CVX tool and the successive convex approximation approach (SCA). Finally, we propose a distributed computation offloading algorithm. The simulation results compare the performance of the proposed offloading scheme with different algorithms. We also analyze the influence of network parameters on the network latency and obtain some interesting conclusions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2979774</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0874-240X</orcidid><orcidid>https://orcid.org/0000-0002-9674-9889</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c65594c656584e2baeb5416d2c28ffd9
source IEEE Xplore Open Access Journals
subjects Algorithms
Computation offloading
Constraints
Edge computing
Energy consumption
Energy limitation
Internet of Things
Linear programming
MEC enabled HetNets
Mixed integer
Network latency
Nonlinear programming
Optimization
Resource allocation
Terminals
title Computation Offloading and Resource Allocation for the Internet of Things in Energy-constrained MEC-enabled HetNets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20Offloading%20and%20Resource%20Allocation%20for%20the%20Internet%20of%20Things%20in%20Energy-constrained%20MEC-enabled%20HetNets&rft.jtitle=IEEE%20access&rft.au=Tang,%20Liangrui&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2979774&rft_dat=%3Cproquest_doaj_%3E2454732709%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-1591b5d0fc4f76595c9ffb0bcbb74e1181aeafdc662a9e17ff1f562980cc93643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454732709&rft_id=info:pmid/&rft_ieee_id=9031324&rfr_iscdi=true