Loading…
Leveraging hybrid 1D-CNN and RNN approach for classification of brain cancer gene expression
Leveraging deep learning (DL) approaches in genomics data has led to significant advances in cancer prediction. The continuous availability of gene expression datasets over the preceding years has made them one of the most accessible sources of genome-wide data, advancing cancer bioinformatics resea...
Saved in:
Published in: | Complex & intelligent systems 2024-12, Vol.10 (6), p.7605-7617 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-7ea3121932c5db0ac79db726237a9278789b2e08cfa4fe8cd6e8579dd5e96ea73 |
container_end_page | 7617 |
container_issue | 6 |
container_start_page | 7605 |
container_title | Complex & intelligent systems |
container_volume | 10 |
creator | Afify, Heba M. Mohammed, Kamel K. Hassanien, Aboul Ella |
description | Leveraging deep learning (DL) approaches in genomics data has led to significant advances in cancer prediction. The continuous availability of gene expression datasets over the preceding years has made them one of the most accessible sources of genome-wide data, advancing cancer bioinformatics research and advanced prediction of cancer genomic data. To contribute to this topic, the proposed work is based on DL prediction in both convolutional neural network (CNN) and recurrent neural network (RNN) for five classes in brain cancer using gene expression data obtained from Curated Microarray Database (CuMiDa). This database is used for cancer classification and is publicly accessible on the official CuMiDa website. This paper implemented DL approaches using a One Dimensional-Convolutional Neural Network (1D-CNN) followed by an RNN classifier with and without Bayesian hyperparameter optimization (BO). The accuracy of this hybrid model combination of (BO + 1D-CNN + RNN) produced the highest classification accuracy of 100% instead of the 95% for the ML model in prior work and 90% for the (1D-CNN + RNN) algorithm considered in the paper. Therefore, the classification of brain cancer gene expression according to the hybrid model (BO + 1D-CNN + RNN) provides more accurate and useful assessments for patients with different types of brain cancers. Thus, gene expression data are used to create a DL classification-based- hybrid model that will hold senior promise in the treatment of brain cancer. |
doi_str_mv | 10.1007/s40747-024-01555-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c658483ef60542a3ae1c3b49acc3191a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c658483ef60542a3ae1c3b49acc3191a</doaj_id><sourcerecordid>3117210154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-7ea3121932c5db0ac79db726237a9278789b2e08cfa4fe8cd6e8579dd5e96ea73</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxZeSQEyaL5CToGel-rvSHoubtgaTQEhuATGrnV3LuJIrOaX59pG9pb3lNGL4vTejeU1zzdkNZ8x8LooZZSgTijKutabqQ7MQvLO0ZVqend4dVVq2F81VKVvGGDfGSiYWzfMaf2OGKcSJbF77HAbCv9Ll3R2BOJCHY93vcwK_IWPKxO-glDAGD4eQIkkj6TOESDxEj5lMGJHgn33GSqX4sTkfYVfw6m-9bJ6-3T4uf9D1_ffV8suaesX5gRoEyeuOUng99Ay86YbeiFZIA50w1tiuF8isH0GNaP3QotWVGTR2LYKRl81q9h0SbN0-h5-QX12C4E6NlCcH-RD8Dp1vtVVW4lhPowRIQO5lrzrwXvKOQ_X6NHvVX_96wXJw2_SSY13fSc6N4PXEqlJipnxOpWQc_03lzB1DcXMorobiTqG4o0jOolLhOGH-b_2O6g0SiY3d</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117210154</pqid></control><display><type>article</type><title>Leveraging hybrid 1D-CNN and RNN approach for classification of brain cancer gene expression</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Afify, Heba M. ; Mohammed, Kamel K. ; Hassanien, Aboul Ella</creator><creatorcontrib>Afify, Heba M. ; Mohammed, Kamel K. ; Hassanien, Aboul Ella</creatorcontrib><description>Leveraging deep learning (DL) approaches in genomics data has led to significant advances in cancer prediction. The continuous availability of gene expression datasets over the preceding years has made them one of the most accessible sources of genome-wide data, advancing cancer bioinformatics research and advanced prediction of cancer genomic data. To contribute to this topic, the proposed work is based on DL prediction in both convolutional neural network (CNN) and recurrent neural network (RNN) for five classes in brain cancer using gene expression data obtained from Curated Microarray Database (CuMiDa). This database is used for cancer classification and is publicly accessible on the official CuMiDa website. This paper implemented DL approaches using a One Dimensional-Convolutional Neural Network (1D-CNN) followed by an RNN classifier with and without Bayesian hyperparameter optimization (BO). The accuracy of this hybrid model combination of (BO + 1D-CNN + RNN) produced the highest classification accuracy of 100% instead of the 95% for the ML model in prior work and 90% for the (1D-CNN + RNN) algorithm considered in the paper. Therefore, the classification of brain cancer gene expression according to the hybrid model (BO + 1D-CNN + RNN) provides more accurate and useful assessments for patients with different types of brain cancers. Thus, gene expression data are used to create a DL classification-based- hybrid model that will hold senior promise in the treatment of brain cancer.</description><identifier>ISSN: 2199-4536</identifier><identifier>EISSN: 2198-6053</identifier><identifier>DOI: 10.1007/s40747-024-01555-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accessibility ; Algorithms ; Artificial neural networks ; Bayesian optimization (BO) ; Bioinformatics ; Brain ; Brain cancer ; Cancer ; Classification ; Classification of brain cancer genes ; Complexity ; Computational Intelligence ; Curated microarray database (CuMiDa) ; Data Structures and Information Theory ; Engineering ; Gene expression ; Machine learning ; Neural networks ; One dimensional-convolutional neural network (1D-CNN) ; Original Article ; Recurrent neural network (RNN) ; Recurrent neural networks</subject><ispartof>Complex & intelligent systems, 2024-12, Vol.10 (6), p.7605-7617</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c411t-7ea3121932c5db0ac79db726237a9278789b2e08cfa4fe8cd6e8579dd5e96ea73</cites><orcidid>0000-0002-6279-0883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3117210154?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Afify, Heba M.</creatorcontrib><creatorcontrib>Mohammed, Kamel K.</creatorcontrib><creatorcontrib>Hassanien, Aboul Ella</creatorcontrib><title>Leveraging hybrid 1D-CNN and RNN approach for classification of brain cancer gene expression</title><title>Complex & intelligent systems</title><addtitle>Complex Intell. Syst</addtitle><description>Leveraging deep learning (DL) approaches in genomics data has led to significant advances in cancer prediction. The continuous availability of gene expression datasets over the preceding years has made them one of the most accessible sources of genome-wide data, advancing cancer bioinformatics research and advanced prediction of cancer genomic data. To contribute to this topic, the proposed work is based on DL prediction in both convolutional neural network (CNN) and recurrent neural network (RNN) for five classes in brain cancer using gene expression data obtained from Curated Microarray Database (CuMiDa). This database is used for cancer classification and is publicly accessible on the official CuMiDa website. This paper implemented DL approaches using a One Dimensional-Convolutional Neural Network (1D-CNN) followed by an RNN classifier with and without Bayesian hyperparameter optimization (BO). The accuracy of this hybrid model combination of (BO + 1D-CNN + RNN) produced the highest classification accuracy of 100% instead of the 95% for the ML model in prior work and 90% for the (1D-CNN + RNN) algorithm considered in the paper. Therefore, the classification of brain cancer gene expression according to the hybrid model (BO + 1D-CNN + RNN) provides more accurate and useful assessments for patients with different types of brain cancers. Thus, gene expression data are used to create a DL classification-based- hybrid model that will hold senior promise in the treatment of brain cancer.</description><subject>Accessibility</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bayesian optimization (BO)</subject><subject>Bioinformatics</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Classification</subject><subject>Classification of brain cancer genes</subject><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Curated microarray database (CuMiDa)</subject><subject>Data Structures and Information Theory</subject><subject>Engineering</subject><subject>Gene expression</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>One dimensional-convolutional neural network (1D-CNN)</subject><subject>Original Article</subject><subject>Recurrent neural network (RNN)</subject><subject>Recurrent neural networks</subject><issn>2199-4536</issn><issn>2198-6053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9rGzEQxZeSQEyaL5CToGel-rvSHoubtgaTQEhuATGrnV3LuJIrOaX59pG9pb3lNGL4vTejeU1zzdkNZ8x8LooZZSgTijKutabqQ7MQvLO0ZVqend4dVVq2F81VKVvGGDfGSiYWzfMaf2OGKcSJbF77HAbCv9Ll3R2BOJCHY93vcwK_IWPKxO-glDAGD4eQIkkj6TOESDxEj5lMGJHgn33GSqX4sTkfYVfw6m-9bJ6-3T4uf9D1_ffV8suaesX5gRoEyeuOUng99Ay86YbeiFZIA50w1tiuF8isH0GNaP3QotWVGTR2LYKRl81q9h0SbN0-h5-QX12C4E6NlCcH-RD8Dp1vtVVW4lhPowRIQO5lrzrwXvKOQ_X6NHvVX_96wXJw2_SSY13fSc6N4PXEqlJipnxOpWQc_03lzB1DcXMorobiTqG4o0jOolLhOGH-b_2O6g0SiY3d</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Afify, Heba M.</creator><creator>Mohammed, Kamel K.</creator><creator>Hassanien, Aboul Ella</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6279-0883</orcidid></search><sort><creationdate>20241201</creationdate><title>Leveraging hybrid 1D-CNN and RNN approach for classification of brain cancer gene expression</title><author>Afify, Heba M. ; Mohammed, Kamel K. ; Hassanien, Aboul Ella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-7ea3121932c5db0ac79db726237a9278789b2e08cfa4fe8cd6e8579dd5e96ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accessibility</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bayesian optimization (BO)</topic><topic>Bioinformatics</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Classification</topic><topic>Classification of brain cancer genes</topic><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Curated microarray database (CuMiDa)</topic><topic>Data Structures and Information Theory</topic><topic>Engineering</topic><topic>Gene expression</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>One dimensional-convolutional neural network (1D-CNN)</topic><topic>Original Article</topic><topic>Recurrent neural network (RNN)</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afify, Heba M.</creatorcontrib><creatorcontrib>Mohammed, Kamel K.</creatorcontrib><creatorcontrib>Hassanien, Aboul Ella</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complex & intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afify, Heba M.</au><au>Mohammed, Kamel K.</au><au>Hassanien, Aboul Ella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging hybrid 1D-CNN and RNN approach for classification of brain cancer gene expression</atitle><jtitle>Complex & intelligent systems</jtitle><stitle>Complex Intell. Syst</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>10</volume><issue>6</issue><spage>7605</spage><epage>7617</epage><pages>7605-7617</pages><issn>2199-4536</issn><eissn>2198-6053</eissn><abstract>Leveraging deep learning (DL) approaches in genomics data has led to significant advances in cancer prediction. The continuous availability of gene expression datasets over the preceding years has made them one of the most accessible sources of genome-wide data, advancing cancer bioinformatics research and advanced prediction of cancer genomic data. To contribute to this topic, the proposed work is based on DL prediction in both convolutional neural network (CNN) and recurrent neural network (RNN) for five classes in brain cancer using gene expression data obtained from Curated Microarray Database (CuMiDa). This database is used for cancer classification and is publicly accessible on the official CuMiDa website. This paper implemented DL approaches using a One Dimensional-Convolutional Neural Network (1D-CNN) followed by an RNN classifier with and without Bayesian hyperparameter optimization (BO). The accuracy of this hybrid model combination of (BO + 1D-CNN + RNN) produced the highest classification accuracy of 100% instead of the 95% for the ML model in prior work and 90% for the (1D-CNN + RNN) algorithm considered in the paper. Therefore, the classification of brain cancer gene expression according to the hybrid model (BO + 1D-CNN + RNN) provides more accurate and useful assessments for patients with different types of brain cancers. Thus, gene expression data are used to create a DL classification-based- hybrid model that will hold senior promise in the treatment of brain cancer.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40747-024-01555-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6279-0883</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2199-4536 |
ispartof | Complex & intelligent systems, 2024-12, Vol.10 (6), p.7605-7617 |
issn | 2199-4536 2198-6053 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c658483ef60542a3ae1c3b49acc3191a |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Accessibility Algorithms Artificial neural networks Bayesian optimization (BO) Bioinformatics Brain Brain cancer Cancer Classification Classification of brain cancer genes Complexity Computational Intelligence Curated microarray database (CuMiDa) Data Structures and Information Theory Engineering Gene expression Machine learning Neural networks One dimensional-convolutional neural network (1D-CNN) Original Article Recurrent neural network (RNN) Recurrent neural networks |
title | Leveraging hybrid 1D-CNN and RNN approach for classification of brain cancer gene expression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20hybrid%201D-CNN%20and%20RNN%20approach%20for%20classification%20of%20brain%20cancer%20gene%20expression&rft.jtitle=Complex%20&%20intelligent%20systems&rft.au=Afify,%20Heba%20M.&rft.date=2024-12-01&rft.volume=10&rft.issue=6&rft.spage=7605&rft.epage=7617&rft.pages=7605-7617&rft.issn=2199-4536&rft.eissn=2198-6053&rft_id=info:doi/10.1007/s40747-024-01555-4&rft_dat=%3Cproquest_doaj_%3E3117210154%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-7ea3121932c5db0ac79db726237a9278789b2e08cfa4fe8cd6e8579dd5e96ea73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3117210154&rft_id=info:pmid/&rfr_iscdi=true |