Loading…

Leveraging hybrid 1D-CNN and RNN approach for classification of brain cancer gene expression

Leveraging deep learning (DL) approaches in genomics data has led to significant advances in cancer prediction. The continuous availability of gene expression datasets over the preceding years has made them one of the most accessible sources of genome-wide data, advancing cancer bioinformatics resea...

Full description

Saved in:
Bibliographic Details
Published in:Complex & intelligent systems 2024-12, Vol.10 (6), p.7605-7617
Main Authors: Afify, Heba M., Mohammed, Kamel K., Hassanien, Aboul Ella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c411t-7ea3121932c5db0ac79db726237a9278789b2e08cfa4fe8cd6e8579dd5e96ea73
container_end_page 7617
container_issue 6
container_start_page 7605
container_title Complex & intelligent systems
container_volume 10
creator Afify, Heba M.
Mohammed, Kamel K.
Hassanien, Aboul Ella
description Leveraging deep learning (DL) approaches in genomics data has led to significant advances in cancer prediction. The continuous availability of gene expression datasets over the preceding years has made them one of the most accessible sources of genome-wide data, advancing cancer bioinformatics research and advanced prediction of cancer genomic data. To contribute to this topic, the proposed work is based on DL prediction in both convolutional neural network (CNN) and recurrent neural network (RNN) for five classes in brain cancer using gene expression data obtained from Curated Microarray Database (CuMiDa). This database is used for cancer classification and is publicly accessible on the official CuMiDa website. This paper implemented DL approaches using a One Dimensional-Convolutional Neural Network (1D-CNN) followed by an RNN classifier with and without Bayesian hyperparameter optimization (BO). The accuracy of this hybrid model combination of (BO + 1D-CNN + RNN) produced the highest classification accuracy of 100% instead of the 95% for the ML model in prior work and 90% for the (1D-CNN + RNN) algorithm considered in the paper. Therefore, the classification of brain cancer gene expression according to the hybrid model (BO + 1D-CNN + RNN) provides more accurate and useful assessments for patients with different types of brain cancers. Thus, gene expression data are used to create a DL classification-based- hybrid model that will hold senior promise in the treatment of brain cancer.
doi_str_mv 10.1007/s40747-024-01555-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c658483ef60542a3ae1c3b49acc3191a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c658483ef60542a3ae1c3b49acc3191a</doaj_id><sourcerecordid>3117210154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-7ea3121932c5db0ac79db726237a9278789b2e08cfa4fe8cd6e8579dd5e96ea73</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxZeSQEyaL5CToGel-rvSHoubtgaTQEhuATGrnV3LuJIrOaX59pG9pb3lNGL4vTejeU1zzdkNZ8x8LooZZSgTijKutabqQ7MQvLO0ZVqend4dVVq2F81VKVvGGDfGSiYWzfMaf2OGKcSJbF77HAbCv9Ll3R2BOJCHY93vcwK_IWPKxO-glDAGD4eQIkkj6TOESDxEj5lMGJHgn33GSqX4sTkfYVfw6m-9bJ6-3T4uf9D1_ffV8suaesX5gRoEyeuOUng99Ay86YbeiFZIA50w1tiuF8isH0GNaP3QotWVGTR2LYKRl81q9h0SbN0-h5-QX12C4E6NlCcH-RD8Dp1vtVVW4lhPowRIQO5lrzrwXvKOQ_X6NHvVX_96wXJw2_SSY13fSc6N4PXEqlJipnxOpWQc_03lzB1DcXMorobiTqG4o0jOolLhOGH-b_2O6g0SiY3d</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117210154</pqid></control><display><type>article</type><title>Leveraging hybrid 1D-CNN and RNN approach for classification of brain cancer gene expression</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Afify, Heba M. ; Mohammed, Kamel K. ; Hassanien, Aboul Ella</creator><creatorcontrib>Afify, Heba M. ; Mohammed, Kamel K. ; Hassanien, Aboul Ella</creatorcontrib><description>Leveraging deep learning (DL) approaches in genomics data has led to significant advances in cancer prediction. The continuous availability of gene expression datasets over the preceding years has made them one of the most accessible sources of genome-wide data, advancing cancer bioinformatics research and advanced prediction of cancer genomic data. To contribute to this topic, the proposed work is based on DL prediction in both convolutional neural network (CNN) and recurrent neural network (RNN) for five classes in brain cancer using gene expression data obtained from Curated Microarray Database (CuMiDa). This database is used for cancer classification and is publicly accessible on the official CuMiDa website. This paper implemented DL approaches using a One Dimensional-Convolutional Neural Network (1D-CNN) followed by an RNN classifier with and without Bayesian hyperparameter optimization (BO). The accuracy of this hybrid model combination of (BO + 1D-CNN + RNN) produced the highest classification accuracy of 100% instead of the 95% for the ML model in prior work and 90% for the (1D-CNN + RNN) algorithm considered in the paper. Therefore, the classification of brain cancer gene expression according to the hybrid model (BO + 1D-CNN + RNN) provides more accurate and useful assessments for patients with different types of brain cancers. Thus, gene expression data are used to create a DL classification-based- hybrid model that will hold senior promise in the treatment of brain cancer.</description><identifier>ISSN: 2199-4536</identifier><identifier>EISSN: 2198-6053</identifier><identifier>DOI: 10.1007/s40747-024-01555-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accessibility ; Algorithms ; Artificial neural networks ; Bayesian optimization (BO) ; Bioinformatics ; Brain ; Brain cancer ; Cancer ; Classification ; Classification of brain cancer genes ; Complexity ; Computational Intelligence ; Curated microarray database (CuMiDa) ; Data Structures and Information Theory ; Engineering ; Gene expression ; Machine learning ; Neural networks ; One dimensional-convolutional neural network (1D-CNN) ; Original Article ; Recurrent neural network (RNN) ; Recurrent neural networks</subject><ispartof>Complex &amp; intelligent systems, 2024-12, Vol.10 (6), p.7605-7617</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c411t-7ea3121932c5db0ac79db726237a9278789b2e08cfa4fe8cd6e8579dd5e96ea73</cites><orcidid>0000-0002-6279-0883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3117210154?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Afify, Heba M.</creatorcontrib><creatorcontrib>Mohammed, Kamel K.</creatorcontrib><creatorcontrib>Hassanien, Aboul Ella</creatorcontrib><title>Leveraging hybrid 1D-CNN and RNN approach for classification of brain cancer gene expression</title><title>Complex &amp; intelligent systems</title><addtitle>Complex Intell. Syst</addtitle><description>Leveraging deep learning (DL) approaches in genomics data has led to significant advances in cancer prediction. The continuous availability of gene expression datasets over the preceding years has made them one of the most accessible sources of genome-wide data, advancing cancer bioinformatics research and advanced prediction of cancer genomic data. To contribute to this topic, the proposed work is based on DL prediction in both convolutional neural network (CNN) and recurrent neural network (RNN) for five classes in brain cancer using gene expression data obtained from Curated Microarray Database (CuMiDa). This database is used for cancer classification and is publicly accessible on the official CuMiDa website. This paper implemented DL approaches using a One Dimensional-Convolutional Neural Network (1D-CNN) followed by an RNN classifier with and without Bayesian hyperparameter optimization (BO). The accuracy of this hybrid model combination of (BO + 1D-CNN + RNN) produced the highest classification accuracy of 100% instead of the 95% for the ML model in prior work and 90% for the (1D-CNN + RNN) algorithm considered in the paper. Therefore, the classification of brain cancer gene expression according to the hybrid model (BO + 1D-CNN + RNN) provides more accurate and useful assessments for patients with different types of brain cancers. Thus, gene expression data are used to create a DL classification-based- hybrid model that will hold senior promise in the treatment of brain cancer.</description><subject>Accessibility</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bayesian optimization (BO)</subject><subject>Bioinformatics</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Classification</subject><subject>Classification of brain cancer genes</subject><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Curated microarray database (CuMiDa)</subject><subject>Data Structures and Information Theory</subject><subject>Engineering</subject><subject>Gene expression</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>One dimensional-convolutional neural network (1D-CNN)</subject><subject>Original Article</subject><subject>Recurrent neural network (RNN)</subject><subject>Recurrent neural networks</subject><issn>2199-4536</issn><issn>2198-6053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9rGzEQxZeSQEyaL5CToGel-rvSHoubtgaTQEhuATGrnV3LuJIrOaX59pG9pb3lNGL4vTejeU1zzdkNZ8x8LooZZSgTijKutabqQ7MQvLO0ZVqend4dVVq2F81VKVvGGDfGSiYWzfMaf2OGKcSJbF77HAbCv9Ll3R2BOJCHY93vcwK_IWPKxO-glDAGD4eQIkkj6TOESDxEj5lMGJHgn33GSqX4sTkfYVfw6m-9bJ6-3T4uf9D1_ffV8suaesX5gRoEyeuOUng99Ay86YbeiFZIA50w1tiuF8isH0GNaP3QotWVGTR2LYKRl81q9h0SbN0-h5-QX12C4E6NlCcH-RD8Dp1vtVVW4lhPowRIQO5lrzrwXvKOQ_X6NHvVX_96wXJw2_SSY13fSc6N4PXEqlJipnxOpWQc_03lzB1DcXMorobiTqG4o0jOolLhOGH-b_2O6g0SiY3d</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Afify, Heba M.</creator><creator>Mohammed, Kamel K.</creator><creator>Hassanien, Aboul Ella</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6279-0883</orcidid></search><sort><creationdate>20241201</creationdate><title>Leveraging hybrid 1D-CNN and RNN approach for classification of brain cancer gene expression</title><author>Afify, Heba M. ; Mohammed, Kamel K. ; Hassanien, Aboul Ella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-7ea3121932c5db0ac79db726237a9278789b2e08cfa4fe8cd6e8579dd5e96ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accessibility</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bayesian optimization (BO)</topic><topic>Bioinformatics</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Classification</topic><topic>Classification of brain cancer genes</topic><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Curated microarray database (CuMiDa)</topic><topic>Data Structures and Information Theory</topic><topic>Engineering</topic><topic>Gene expression</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>One dimensional-convolutional neural network (1D-CNN)</topic><topic>Original Article</topic><topic>Recurrent neural network (RNN)</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afify, Heba M.</creatorcontrib><creatorcontrib>Mohammed, Kamel K.</creatorcontrib><creatorcontrib>Hassanien, Aboul Ella</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complex &amp; intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afify, Heba M.</au><au>Mohammed, Kamel K.</au><au>Hassanien, Aboul Ella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging hybrid 1D-CNN and RNN approach for classification of brain cancer gene expression</atitle><jtitle>Complex &amp; intelligent systems</jtitle><stitle>Complex Intell. Syst</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>10</volume><issue>6</issue><spage>7605</spage><epage>7617</epage><pages>7605-7617</pages><issn>2199-4536</issn><eissn>2198-6053</eissn><abstract>Leveraging deep learning (DL) approaches in genomics data has led to significant advances in cancer prediction. The continuous availability of gene expression datasets over the preceding years has made them one of the most accessible sources of genome-wide data, advancing cancer bioinformatics research and advanced prediction of cancer genomic data. To contribute to this topic, the proposed work is based on DL prediction in both convolutional neural network (CNN) and recurrent neural network (RNN) for five classes in brain cancer using gene expression data obtained from Curated Microarray Database (CuMiDa). This database is used for cancer classification and is publicly accessible on the official CuMiDa website. This paper implemented DL approaches using a One Dimensional-Convolutional Neural Network (1D-CNN) followed by an RNN classifier with and without Bayesian hyperparameter optimization (BO). The accuracy of this hybrid model combination of (BO + 1D-CNN + RNN) produced the highest classification accuracy of 100% instead of the 95% for the ML model in prior work and 90% for the (1D-CNN + RNN) algorithm considered in the paper. Therefore, the classification of brain cancer gene expression according to the hybrid model (BO + 1D-CNN + RNN) provides more accurate and useful assessments for patients with different types of brain cancers. Thus, gene expression data are used to create a DL classification-based- hybrid model that will hold senior promise in the treatment of brain cancer.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40747-024-01555-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6279-0883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-4536
ispartof Complex & intelligent systems, 2024-12, Vol.10 (6), p.7605-7617
issn 2199-4536
2198-6053
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c658483ef60542a3ae1c3b49acc3191a
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Accessibility
Algorithms
Artificial neural networks
Bayesian optimization (BO)
Bioinformatics
Brain
Brain cancer
Cancer
Classification
Classification of brain cancer genes
Complexity
Computational Intelligence
Curated microarray database (CuMiDa)
Data Structures and Information Theory
Engineering
Gene expression
Machine learning
Neural networks
One dimensional-convolutional neural network (1D-CNN)
Original Article
Recurrent neural network (RNN)
Recurrent neural networks
title Leveraging hybrid 1D-CNN and RNN approach for classification of brain cancer gene expression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20hybrid%201D-CNN%20and%20RNN%20approach%20for%20classification%20of%20brain%20cancer%20gene%20expression&rft.jtitle=Complex%20&%20intelligent%20systems&rft.au=Afify,%20Heba%20M.&rft.date=2024-12-01&rft.volume=10&rft.issue=6&rft.spage=7605&rft.epage=7617&rft.pages=7605-7617&rft.issn=2199-4536&rft.eissn=2198-6053&rft_id=info:doi/10.1007/s40747-024-01555-4&rft_dat=%3Cproquest_doaj_%3E3117210154%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-7ea3121932c5db0ac79db726237a9278789b2e08cfa4fe8cd6e8579dd5e96ea73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3117210154&rft_id=info:pmid/&rfr_iscdi=true