Loading…
Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses
Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mec...
Saved in:
Published in: | eLife 2024-11, Vol.13 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2795-f709d6f3fe6b37f00f41749707891589ab4bdee3ca568a692841a168c82f254d3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 13 |
creator | Chen, Qiang Ingram, Norianne T Baudin, Jacob Angueyra, Juan M Sinha, Raunak Rieke, Fred |
description | Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations. Here, we introduce a tool that permits the design of light stimuli that predictably alter rod and cone phototransduction currents - including stimuli that compensate for nonlinear properties such as light adaptation. This tool, based on well-established models for the rod and cone phototransduction cascade, permits the separation of nonlinearities in phototransduction from those in downstream circuits. This will allow, for example, direct tests of how adaptation in rod and cone phototransduction affects downstream visual signals and perception. |
doi_str_mv | 10.7554/eLife.93795 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c66225b279374ccf8c8eed9e5476fa36</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c66225b279374ccf8c8eed9e5476fa36</doaj_id><sourcerecordid>3124681544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2795-f709d6f3fe6b37f00f41749707891589ab4bdee3ca568a692841a168c82f254d3</originalsourceid><addsrcrecordid>eNpdks9rFDEUgAdRbKk9eZeAF0G2Tia_TyJF28KCHhS8hUzmZTdLdjImmS39783u1qU1l5fkffmSF17TvMXtlWCMfoKld3CliFDsRXPetaxdtJL-fvlkftZc5rxp6xBUSqxeN2dEUSUVY-fN5keCwdti-vCAtmb00xxM8eMKTetYYgILUw0o-NW6oAR5imOGjEqsix2YgMoafEIpBkB-REO8H3NJYLZo5_Nc86czb5pXzoQMl4_xovn17evP69vF8vvN3fWX5cJ2tYqFE60auCMOeE-Ea1tHsaBKtEIqzKQyPe0HAGIN49Jw1UmKDebSys51jA7kork7eodoNnpKfmvSg47G68NGTCttUvE2gLacdx3r671EUGtdlQAMChgV3BnCq-vz0TXN_RYGC2NJJjyTPs-Mfq1XcacxZlUpaTV8eDSk-GeGXPTWZwshmBHinDXBHeUSM7pH3_-HbuKcxvpXlSKUMkX4nvp4pGyKOSdwp9fgVu97Qh96Qh96otLvnhZwYv91APkLsNG0uQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134459364</pqid></control><display><type>article</type><title>Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Chen, Qiang ; Ingram, Norianne T ; Baudin, Jacob ; Angueyra, Juan M ; Sinha, Raunak ; Rieke, Fred</creator><creatorcontrib>Chen, Qiang ; Ingram, Norianne T ; Baudin, Jacob ; Angueyra, Juan M ; Sinha, Raunak ; Rieke, Fred</creatorcontrib><description>Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations. Here, we introduce a tool that permits the design of light stimuli that predictably alter rod and cone phototransduction currents - including stimuli that compensate for nonlinear properties such as light adaptation. This tool, based on well-established models for the rod and cone phototransduction cascade, permits the separation of nonlinearities in phototransduction from those in downstream circuits. This will allow, for example, direct tests of how adaptation in rod and cone phototransduction affects downstream visual signals and perception.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.93795</identifier><identifier>PMID: 39498955</identifier><language>eng</language><publisher>England: eLife Sciences Publications Ltd</publisher><subject>Adaptation ; Animals ; Light ; Light Signal Transduction ; neural computation ; Neural networks ; Neuroscience ; Photic Stimulation ; Photoreceptors ; Phototransduction ; Retinal Cone Photoreceptor Cells - physiology ; Retinal Rod Photoreceptor Cells - physiology ; Sensory perception ; sensory processing ; Tools and Resources ; Vision, Ocular - physiology ; visual adaptation ; Visual pathways ; Visual perception</subject><ispartof>eLife, 2024-11, Vol.13</ispartof><rights>2024, Chen et al.</rights><rights>2024, Chen et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024, Chen et al 2024 Chen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2795-f709d6f3fe6b37f00f41749707891589ab4bdee3ca568a692841a168c82f254d3</cites><orcidid>0000-0002-7553-1274 ; 0000-0002-9217-3069 ; 0000-0002-1052-2609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3134459364/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3134459364?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39498955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Ingram, Norianne T</creatorcontrib><creatorcontrib>Baudin, Jacob</creatorcontrib><creatorcontrib>Angueyra, Juan M</creatorcontrib><creatorcontrib>Sinha, Raunak</creatorcontrib><creatorcontrib>Rieke, Fred</creatorcontrib><title>Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses</title><title>eLife</title><addtitle>Elife</addtitle><description>Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations. Here, we introduce a tool that permits the design of light stimuli that predictably alter rod and cone phototransduction currents - including stimuli that compensate for nonlinear properties such as light adaptation. This tool, based on well-established models for the rod and cone phototransduction cascade, permits the separation of nonlinearities in phototransduction from those in downstream circuits. This will allow, for example, direct tests of how adaptation in rod and cone phototransduction affects downstream visual signals and perception.</description><subject>Adaptation</subject><subject>Animals</subject><subject>Light</subject><subject>Light Signal Transduction</subject><subject>neural computation</subject><subject>Neural networks</subject><subject>Neuroscience</subject><subject>Photic Stimulation</subject><subject>Photoreceptors</subject><subject>Phototransduction</subject><subject>Retinal Cone Photoreceptor Cells - physiology</subject><subject>Retinal Rod Photoreceptor Cells - physiology</subject><subject>Sensory perception</subject><subject>sensory processing</subject><subject>Tools and Resources</subject><subject>Vision, Ocular - physiology</subject><subject>visual adaptation</subject><subject>Visual pathways</subject><subject>Visual perception</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9rFDEUgAdRbKk9eZeAF0G2Tia_TyJF28KCHhS8hUzmZTdLdjImmS39783u1qU1l5fkffmSF17TvMXtlWCMfoKld3CliFDsRXPetaxdtJL-fvlkftZc5rxp6xBUSqxeN2dEUSUVY-fN5keCwdti-vCAtmb00xxM8eMKTetYYgILUw0o-NW6oAR5imOGjEqsix2YgMoafEIpBkB-REO8H3NJYLZo5_Nc86czb5pXzoQMl4_xovn17evP69vF8vvN3fWX5cJ2tYqFE60auCMOeE-Ea1tHsaBKtEIqzKQyPe0HAGIN49Jw1UmKDebSys51jA7kork7eodoNnpKfmvSg47G68NGTCttUvE2gLacdx3r671EUGtdlQAMChgV3BnCq-vz0TXN_RYGC2NJJjyTPs-Mfq1XcacxZlUpaTV8eDSk-GeGXPTWZwshmBHinDXBHeUSM7pH3_-HbuKcxvpXlSKUMkX4nvp4pGyKOSdwp9fgVu97Qh96Qh96otLvnhZwYv91APkLsNG0uQ</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Chen, Qiang</creator><creator>Ingram, Norianne T</creator><creator>Baudin, Jacob</creator><creator>Angueyra, Juan M</creator><creator>Sinha, Raunak</creator><creator>Rieke, Fred</creator><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7553-1274</orcidid><orcidid>https://orcid.org/0000-0002-9217-3069</orcidid><orcidid>https://orcid.org/0000-0002-1052-2609</orcidid></search><sort><creationdate>20241105</creationdate><title>Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses</title><author>Chen, Qiang ; Ingram, Norianne T ; Baudin, Jacob ; Angueyra, Juan M ; Sinha, Raunak ; Rieke, Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2795-f709d6f3fe6b37f00f41749707891589ab4bdee3ca568a692841a168c82f254d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Animals</topic><topic>Light</topic><topic>Light Signal Transduction</topic><topic>neural computation</topic><topic>Neural networks</topic><topic>Neuroscience</topic><topic>Photic Stimulation</topic><topic>Photoreceptors</topic><topic>Phototransduction</topic><topic>Retinal Cone Photoreceptor Cells - physiology</topic><topic>Retinal Rod Photoreceptor Cells - physiology</topic><topic>Sensory perception</topic><topic>sensory processing</topic><topic>Tools and Resources</topic><topic>Vision, Ocular - physiology</topic><topic>visual adaptation</topic><topic>Visual pathways</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Ingram, Norianne T</creatorcontrib><creatorcontrib>Baudin, Jacob</creatorcontrib><creatorcontrib>Angueyra, Juan M</creatorcontrib><creatorcontrib>Sinha, Raunak</creatorcontrib><creatorcontrib>Rieke, Fred</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qiang</au><au>Ingram, Norianne T</au><au>Baudin, Jacob</au><au>Angueyra, Juan M</au><au>Sinha, Raunak</au><au>Rieke, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2024-11-05</date><risdate>2024</risdate><volume>13</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations. Here, we introduce a tool that permits the design of light stimuli that predictably alter rod and cone phototransduction currents - including stimuli that compensate for nonlinear properties such as light adaptation. This tool, based on well-established models for the rod and cone phototransduction cascade, permits the separation of nonlinearities in phototransduction from those in downstream circuits. This will allow, for example, direct tests of how adaptation in rod and cone phototransduction affects downstream visual signals and perception.</abstract><cop>England</cop><pub>eLife Sciences Publications Ltd</pub><pmid>39498955</pmid><doi>10.7554/eLife.93795</doi><orcidid>https://orcid.org/0000-0002-7553-1274</orcidid><orcidid>https://orcid.org/0000-0002-9217-3069</orcidid><orcidid>https://orcid.org/0000-0002-1052-2609</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2024-11, Vol.13 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c66225b279374ccf8c8eed9e5476fa36 |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Adaptation Animals Light Light Signal Transduction neural computation Neural networks Neuroscience Photic Stimulation Photoreceptors Phototransduction Retinal Cone Photoreceptor Cells - physiology Retinal Rod Photoreceptor Cells - physiology Sensory perception sensory processing Tools and Resources Vision, Ocular - physiology visual adaptation Visual pathways Visual perception |
title | Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictably%20manipulating%20photoreceptor%20light%20responses%20to%20reveal%20their%20role%20in%20downstream%20visual%20responses&rft.jtitle=eLife&rft.au=Chen,%20Qiang&rft.date=2024-11-05&rft.volume=13&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.93795&rft_dat=%3Cproquest_doaj_%3E3124681544%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2795-f709d6f3fe6b37f00f41749707891589ab4bdee3ca568a692841a168c82f254d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3134459364&rft_id=info:pmid/39498955&rfr_iscdi=true |