Loading…

Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses

Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mec...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2024-11, Vol.13
Main Authors: Chen, Qiang, Ingram, Norianne T, Baudin, Jacob, Angueyra, Juan M, Sinha, Raunak, Rieke, Fred
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2795-f709d6f3fe6b37f00f41749707891589ab4bdee3ca568a692841a168c82f254d3
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 13
creator Chen, Qiang
Ingram, Norianne T
Baudin, Jacob
Angueyra, Juan M
Sinha, Raunak
Rieke, Fred
description Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations. Here, we introduce a tool that permits the design of light stimuli that predictably alter rod and cone phototransduction currents - including stimuli that compensate for nonlinear properties such as light adaptation. This tool, based on well-established models for the rod and cone phototransduction cascade, permits the separation of nonlinearities in phototransduction from those in downstream circuits. This will allow, for example, direct tests of how adaptation in rod and cone phototransduction affects downstream visual signals and perception.
doi_str_mv 10.7554/eLife.93795
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c66225b279374ccf8c8eed9e5476fa36</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c66225b279374ccf8c8eed9e5476fa36</doaj_id><sourcerecordid>3124681544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2795-f709d6f3fe6b37f00f41749707891589ab4bdee3ca568a692841a168c82f254d3</originalsourceid><addsrcrecordid>eNpdks9rFDEUgAdRbKk9eZeAF0G2Tia_TyJF28KCHhS8hUzmZTdLdjImmS39783u1qU1l5fkffmSF17TvMXtlWCMfoKld3CliFDsRXPetaxdtJL-fvlkftZc5rxp6xBUSqxeN2dEUSUVY-fN5keCwdti-vCAtmb00xxM8eMKTetYYgILUw0o-NW6oAR5imOGjEqsix2YgMoafEIpBkB-REO8H3NJYLZo5_Nc86czb5pXzoQMl4_xovn17evP69vF8vvN3fWX5cJ2tYqFE60auCMOeE-Ea1tHsaBKtEIqzKQyPe0HAGIN49Jw1UmKDebSys51jA7kork7eodoNnpKfmvSg47G68NGTCttUvE2gLacdx3r671EUGtdlQAMChgV3BnCq-vz0TXN_RYGC2NJJjyTPs-Mfq1XcacxZlUpaTV8eDSk-GeGXPTWZwshmBHinDXBHeUSM7pH3_-HbuKcxvpXlSKUMkX4nvp4pGyKOSdwp9fgVu97Qh96Qh96otLvnhZwYv91APkLsNG0uQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134459364</pqid></control><display><type>article</type><title>Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Chen, Qiang ; Ingram, Norianne T ; Baudin, Jacob ; Angueyra, Juan M ; Sinha, Raunak ; Rieke, Fred</creator><creatorcontrib>Chen, Qiang ; Ingram, Norianne T ; Baudin, Jacob ; Angueyra, Juan M ; Sinha, Raunak ; Rieke, Fred</creatorcontrib><description>Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations. Here, we introduce a tool that permits the design of light stimuli that predictably alter rod and cone phototransduction currents - including stimuli that compensate for nonlinear properties such as light adaptation. This tool, based on well-established models for the rod and cone phototransduction cascade, permits the separation of nonlinearities in phototransduction from those in downstream circuits. This will allow, for example, direct tests of how adaptation in rod and cone phototransduction affects downstream visual signals and perception.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.93795</identifier><identifier>PMID: 39498955</identifier><language>eng</language><publisher>England: eLife Sciences Publications Ltd</publisher><subject>Adaptation ; Animals ; Light ; Light Signal Transduction ; neural computation ; Neural networks ; Neuroscience ; Photic Stimulation ; Photoreceptors ; Phototransduction ; Retinal Cone Photoreceptor Cells - physiology ; Retinal Rod Photoreceptor Cells - physiology ; Sensory perception ; sensory processing ; Tools and Resources ; Vision, Ocular - physiology ; visual adaptation ; Visual pathways ; Visual perception</subject><ispartof>eLife, 2024-11, Vol.13</ispartof><rights>2024, Chen et al.</rights><rights>2024, Chen et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024, Chen et al 2024 Chen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2795-f709d6f3fe6b37f00f41749707891589ab4bdee3ca568a692841a168c82f254d3</cites><orcidid>0000-0002-7553-1274 ; 0000-0002-9217-3069 ; 0000-0002-1052-2609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3134459364/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3134459364?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39498955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Ingram, Norianne T</creatorcontrib><creatorcontrib>Baudin, Jacob</creatorcontrib><creatorcontrib>Angueyra, Juan M</creatorcontrib><creatorcontrib>Sinha, Raunak</creatorcontrib><creatorcontrib>Rieke, Fred</creatorcontrib><title>Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses</title><title>eLife</title><addtitle>Elife</addtitle><description>Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations. Here, we introduce a tool that permits the design of light stimuli that predictably alter rod and cone phototransduction currents - including stimuli that compensate for nonlinear properties such as light adaptation. This tool, based on well-established models for the rod and cone phototransduction cascade, permits the separation of nonlinearities in phototransduction from those in downstream circuits. This will allow, for example, direct tests of how adaptation in rod and cone phototransduction affects downstream visual signals and perception.</description><subject>Adaptation</subject><subject>Animals</subject><subject>Light</subject><subject>Light Signal Transduction</subject><subject>neural computation</subject><subject>Neural networks</subject><subject>Neuroscience</subject><subject>Photic Stimulation</subject><subject>Photoreceptors</subject><subject>Phototransduction</subject><subject>Retinal Cone Photoreceptor Cells - physiology</subject><subject>Retinal Rod Photoreceptor Cells - physiology</subject><subject>Sensory perception</subject><subject>sensory processing</subject><subject>Tools and Resources</subject><subject>Vision, Ocular - physiology</subject><subject>visual adaptation</subject><subject>Visual pathways</subject><subject>Visual perception</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9rFDEUgAdRbKk9eZeAF0G2Tia_TyJF28KCHhS8hUzmZTdLdjImmS39783u1qU1l5fkffmSF17TvMXtlWCMfoKld3CliFDsRXPetaxdtJL-fvlkftZc5rxp6xBUSqxeN2dEUSUVY-fN5keCwdti-vCAtmb00xxM8eMKTetYYgILUw0o-NW6oAR5imOGjEqsix2YgMoafEIpBkB-REO8H3NJYLZo5_Nc86czb5pXzoQMl4_xovn17evP69vF8vvN3fWX5cJ2tYqFE60auCMOeE-Ea1tHsaBKtEIqzKQyPe0HAGIN49Jw1UmKDebSys51jA7kork7eodoNnpKfmvSg47G68NGTCttUvE2gLacdx3r671EUGtdlQAMChgV3BnCq-vz0TXN_RYGC2NJJjyTPs-Mfq1XcacxZlUpaTV8eDSk-GeGXPTWZwshmBHinDXBHeUSM7pH3_-HbuKcxvpXlSKUMkX4nvp4pGyKOSdwp9fgVu97Qh96Qh96otLvnhZwYv91APkLsNG0uQ</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Chen, Qiang</creator><creator>Ingram, Norianne T</creator><creator>Baudin, Jacob</creator><creator>Angueyra, Juan M</creator><creator>Sinha, Raunak</creator><creator>Rieke, Fred</creator><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7553-1274</orcidid><orcidid>https://orcid.org/0000-0002-9217-3069</orcidid><orcidid>https://orcid.org/0000-0002-1052-2609</orcidid></search><sort><creationdate>20241105</creationdate><title>Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses</title><author>Chen, Qiang ; Ingram, Norianne T ; Baudin, Jacob ; Angueyra, Juan M ; Sinha, Raunak ; Rieke, Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2795-f709d6f3fe6b37f00f41749707891589ab4bdee3ca568a692841a168c82f254d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Animals</topic><topic>Light</topic><topic>Light Signal Transduction</topic><topic>neural computation</topic><topic>Neural networks</topic><topic>Neuroscience</topic><topic>Photic Stimulation</topic><topic>Photoreceptors</topic><topic>Phototransduction</topic><topic>Retinal Cone Photoreceptor Cells - physiology</topic><topic>Retinal Rod Photoreceptor Cells - physiology</topic><topic>Sensory perception</topic><topic>sensory processing</topic><topic>Tools and Resources</topic><topic>Vision, Ocular - physiology</topic><topic>visual adaptation</topic><topic>Visual pathways</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Ingram, Norianne T</creatorcontrib><creatorcontrib>Baudin, Jacob</creatorcontrib><creatorcontrib>Angueyra, Juan M</creatorcontrib><creatorcontrib>Sinha, Raunak</creatorcontrib><creatorcontrib>Rieke, Fred</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qiang</au><au>Ingram, Norianne T</au><au>Baudin, Jacob</au><au>Angueyra, Juan M</au><au>Sinha, Raunak</au><au>Rieke, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2024-11-05</date><risdate>2024</risdate><volume>13</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations. Here, we introduce a tool that permits the design of light stimuli that predictably alter rod and cone phototransduction currents - including stimuli that compensate for nonlinear properties such as light adaptation. This tool, based on well-established models for the rod and cone phototransduction cascade, permits the separation of nonlinearities in phototransduction from those in downstream circuits. This will allow, for example, direct tests of how adaptation in rod and cone phototransduction affects downstream visual signals and perception.</abstract><cop>England</cop><pub>eLife Sciences Publications Ltd</pub><pmid>39498955</pmid><doi>10.7554/eLife.93795</doi><orcidid>https://orcid.org/0000-0002-7553-1274</orcidid><orcidid>https://orcid.org/0000-0002-9217-3069</orcidid><orcidid>https://orcid.org/0000-0002-1052-2609</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2024-11, Vol.13
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c66225b279374ccf8c8eed9e5476fa36
source PubMed Central Free; Publicly Available Content Database
subjects Adaptation
Animals
Light
Light Signal Transduction
neural computation
Neural networks
Neuroscience
Photic Stimulation
Photoreceptors
Phototransduction
Retinal Cone Photoreceptor Cells - physiology
Retinal Rod Photoreceptor Cells - physiology
Sensory perception
sensory processing
Tools and Resources
Vision, Ocular - physiology
visual adaptation
Visual pathways
Visual perception
title Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictably%20manipulating%20photoreceptor%20light%20responses%20to%20reveal%20their%20role%20in%20downstream%20visual%20responses&rft.jtitle=eLife&rft.au=Chen,%20Qiang&rft.date=2024-11-05&rft.volume=13&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.93795&rft_dat=%3Cproquest_doaj_%3E3124681544%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2795-f709d6f3fe6b37f00f41749707891589ab4bdee3ca568a692841a168c82f254d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3134459364&rft_id=info:pmid/39498955&rfr_iscdi=true