Loading…

Photostabilization of Poly(vinyl chloride) Films Blended with Organotin Complexes of Mefenamic Acid for Outdoor Applications

This study develops a process for enhancing the photostabilization of PVC films blended with a low concentration of mefenamate–tin complex. One tri-substituted and three di-substituted organotin complexes containing mefenamate unit are synthesized, and their chemical structures are established. The...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-03, Vol.11 (6), p.2853
Main Authors: Ahmed, Ahmed, El-Hiti, Gamal A., Hadi, Angham G., Ahmed, Dina S., Baashen, Mohammed A., Hashim, Hassan, Yousif, Emad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study develops a process for enhancing the photostabilization of PVC films blended with a low concentration of mefenamate–tin complex. One tri-substituted and three di-substituted organotin complexes containing mefenamate unit are synthesized, and their chemical structures are established. The reactions of mefenamic acid and a number of substituted tin chlorides gave the corresponding tin complexes in 70–77% yields. Tin complexes were blended with PVC and thin films. The effect of the addition of additives against long-term irradiation (290–400 nm, 300 h) is also tested. Changes in the infrared spectra, weight, and surface of the PVC blends due to irradiation are examined and analyzed. Any damage to the PVC surface and its chemical degradation level are noticeably low in the presence of additives. Minimal photodegradation levels and surface changes of the irradiated PVC films are observed when the triphenyltin complex is used. Such a complex is highly aromatic and can act as an ultraviolet irradiation absorber and a scavenger for hydrogen chloride and radicals produced due to the photooxidation and photoirradiation of PVC films.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11062853