Loading…

An optimised protocol for detection of SARS-CoV-2 in stool

SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. However, robust and...

Full description

Saved in:
Bibliographic Details
Published in:BMC microbiology 2021-09, Vol.21 (1), p.242-242, Article 242
Main Authors: Li, Tianqi, Garcia-Gutierrez, Enriqueta, Yara, Daniel A, Scadden, Jacob, Davies, Jade, Hutchins, Chloe, Aydin, Alp, O'Grady, Justin, Narbad, Arjan, Romano, Stefano, Sayavedra, Lizbeth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83
cites cdi_FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83
container_end_page 242
container_issue 1
container_start_page 242
container_title BMC microbiology
container_volume 21
creator Li, Tianqi
Garcia-Gutierrez, Enriqueta
Yara, Daniel A
Scadden, Jacob
Davies, Jade
Hutchins, Chloe
Aydin, Alp
O'Grady, Justin
Narbad, Arjan
Romano, Stefano
Sayavedra, Lizbeth
description SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. However, robust and reliable methods are needed to estimate the prevalence and persistence of SARS-CoV-2 in the gut and to ensure the safety of microbiome-based procedures such as faecal microbiota transplant (FMT). The aim of this study was to establish a sensitive and reliable method for detecting SARS-CoV-2 in stool samples. Stool samples from individuals free of SARS-CoV-2 were homogenised in saline buffer and spiked with a known titre of inactivated virus ranging from 50 to 750 viral particles per 100 mg stool. Viral particles were concentrated by ultrafiltration, RNA was extracted, and SARS-CoV-2 was detected via real-time reverse-transcription polymerase chain reaction (RT-qPCR) using the CDC primers and probes. The RNA extraction procedure we used allowed for the detection of SARS-CoV-2 via RT-qPCR in most of the stool samples tested. We could detect as few as 50 viral particles per 100 mg of stool. However, high variability was observed across samples at low viral titres. The primer set targeting the N1 region provided more reliable and precise results and for this primer set our method had a limit of detection of 1 viral particle per mg of stool. Here we describe a sensitive method for detecting SARS-CoV-2 in stool samples. This method can be used to establish the persistence of SARS-CoV-2 in stool and ensure the safety of clinical practices such as FMT.
doi_str_mv 10.1186/s12866-021-02297-w
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c68b9cb353b14be58a3ed5940cd45e4a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A675233088</galeid><doaj_id>oai_doaj_org_article_c68b9cb353b14be58a3ed5940cd45e4a</doaj_id><sourcerecordid>A675233088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbK3-AS9kwBu9mJrvZLwoLIsfCwWhq96GJHNmzTI7WZOM1X9vtltrRySEhJPnvIe8vFX1HKNzjJV4kzBRQjSI4LJJK5vrB9UpZhI3BCv08N79pHqS0hYhLBWVj6sTyphSgtLT6u1irMM--51P0NX7GHJwYaj7EOsOMrjsQwH6er24WjfL8LUhtR_rlEMYnlaPejMkeHZ7nlVf3r_7vPzYXH76sFouLhvHW5kbYi0gIpnkgjDFDcJGdQJaaAlzHeu5ERaUpa1EDqjj3PKulcxS5qSEXtGzanXU7YLZ6n30OxN_6WC8vimEuNEmZu8G0E4o2zpLObWYWeDKUOh4y1AZxIGZonVx1NpPdgedgzFHM8xE5y-j_6Y34YdWDLcKtUXg1a1ADN8nSFkX5xwMgxkhTEkTLhHGWHBS0Jf_oNswxbFYdaAYkwIx-pfamPIBP_ahzHUHUb0QsshQpA4enP-HKquDnXdhhN6X-qzh9ayhMBl-5o2ZUtKr9dWcJUfWxZBShP7OD4z0IWn6mDRdkqZvkqavS9OL-07etfyJFv0N3kjK-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574476043</pqid></control><display><type>article</type><title>An optimised protocol for detection of SARS-CoV-2 in stool</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Li, Tianqi ; Garcia-Gutierrez, Enriqueta ; Yara, Daniel A ; Scadden, Jacob ; Davies, Jade ; Hutchins, Chloe ; Aydin, Alp ; O'Grady, Justin ; Narbad, Arjan ; Romano, Stefano ; Sayavedra, Lizbeth</creator><creatorcontrib>Li, Tianqi ; Garcia-Gutierrez, Enriqueta ; Yara, Daniel A ; Scadden, Jacob ; Davies, Jade ; Hutchins, Chloe ; Aydin, Alp ; O'Grady, Justin ; Narbad, Arjan ; Romano, Stefano ; Sayavedra, Lizbeth</creatorcontrib><description>SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. However, robust and reliable methods are needed to estimate the prevalence and persistence of SARS-CoV-2 in the gut and to ensure the safety of microbiome-based procedures such as faecal microbiota transplant (FMT). The aim of this study was to establish a sensitive and reliable method for detecting SARS-CoV-2 in stool samples. Stool samples from individuals free of SARS-CoV-2 were homogenised in saline buffer and spiked with a known titre of inactivated virus ranging from 50 to 750 viral particles per 100 mg stool. Viral particles were concentrated by ultrafiltration, RNA was extracted, and SARS-CoV-2 was detected via real-time reverse-transcription polymerase chain reaction (RT-qPCR) using the CDC primers and probes. The RNA extraction procedure we used allowed for the detection of SARS-CoV-2 via RT-qPCR in most of the stool samples tested. We could detect as few as 50 viral particles per 100 mg of stool. However, high variability was observed across samples at low viral titres. The primer set targeting the N1 region provided more reliable and precise results and for this primer set our method had a limit of detection of 1 viral particle per mg of stool. Here we describe a sensitive method for detecting SARS-CoV-2 in stool samples. This method can be used to establish the persistence of SARS-CoV-2 in stool and ensure the safety of clinical practices such as FMT.</description><identifier>ISSN: 1471-2180</identifier><identifier>EISSN: 1471-2180</identifier><identifier>DOI: 10.1186/s12866-021-02297-w</identifier><identifier>PMID: 34488633</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Clinical-test ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - virology ; COVID-19 Nucleic Acid Testing - methods ; COVID19 ; Disease transmission ; DNA probes ; Extraction procedures ; Feces ; Feces - virology ; FMT ; Genomes ; Health aspects ; Humans ; Limit of Detection ; Methodology ; Methods ; Microbiomes ; Microbiota ; Microbiota (Symbiotic organisms) ; Molecular diagnostic techniques ; Pandemics ; Polymerase chain reaction ; RNA probes ; RNA, Viral - isolation &amp; purification ; RT-qPCR ; Safety ; SARS-CoV-2 - isolation &amp; purification ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Stool ; Ultrafiltration ; Viral diseases ; Viruses</subject><ispartof>BMC microbiology, 2021-09, Vol.21 (1), p.242-242, Article 242</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83</citedby><cites>FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83</cites><orcidid>0000-0002-7600-1953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419809/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2574476043?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,38495,43874,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34488633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tianqi</creatorcontrib><creatorcontrib>Garcia-Gutierrez, Enriqueta</creatorcontrib><creatorcontrib>Yara, Daniel A</creatorcontrib><creatorcontrib>Scadden, Jacob</creatorcontrib><creatorcontrib>Davies, Jade</creatorcontrib><creatorcontrib>Hutchins, Chloe</creatorcontrib><creatorcontrib>Aydin, Alp</creatorcontrib><creatorcontrib>O'Grady, Justin</creatorcontrib><creatorcontrib>Narbad, Arjan</creatorcontrib><creatorcontrib>Romano, Stefano</creatorcontrib><creatorcontrib>Sayavedra, Lizbeth</creatorcontrib><title>An optimised protocol for detection of SARS-CoV-2 in stool</title><title>BMC microbiology</title><addtitle>BMC Microbiol</addtitle><description>SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. However, robust and reliable methods are needed to estimate the prevalence and persistence of SARS-CoV-2 in the gut and to ensure the safety of microbiome-based procedures such as faecal microbiota transplant (FMT). The aim of this study was to establish a sensitive and reliable method for detecting SARS-CoV-2 in stool samples. Stool samples from individuals free of SARS-CoV-2 were homogenised in saline buffer and spiked with a known titre of inactivated virus ranging from 50 to 750 viral particles per 100 mg stool. Viral particles were concentrated by ultrafiltration, RNA was extracted, and SARS-CoV-2 was detected via real-time reverse-transcription polymerase chain reaction (RT-qPCR) using the CDC primers and probes. The RNA extraction procedure we used allowed for the detection of SARS-CoV-2 via RT-qPCR in most of the stool samples tested. We could detect as few as 50 viral particles per 100 mg of stool. However, high variability was observed across samples at low viral titres. The primer set targeting the N1 region provided more reliable and precise results and for this primer set our method had a limit of detection of 1 viral particle per mg of stool. Here we describe a sensitive method for detecting SARS-CoV-2 in stool samples. This method can be used to establish the persistence of SARS-CoV-2 in stool and ensure the safety of clinical practices such as FMT.</description><subject>Clinical-test</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - virology</subject><subject>COVID-19 Nucleic Acid Testing - methods</subject><subject>COVID19</subject><subject>Disease transmission</subject><subject>DNA probes</subject><subject>Extraction procedures</subject><subject>Feces</subject><subject>Feces - virology</subject><subject>FMT</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Limit of Detection</subject><subject>Methodology</subject><subject>Methods</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Molecular diagnostic techniques</subject><subject>Pandemics</subject><subject>Polymerase chain reaction</subject><subject>RNA probes</subject><subject>RNA, Viral - isolation &amp; purification</subject><subject>RT-qPCR</subject><subject>Safety</subject><subject>SARS-CoV-2 - isolation &amp; purification</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Stool</subject><subject>Ultrafiltration</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>1471-2180</issn><issn>1471-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdRbK3-AS9kwBu9mJrvZLwoLIsfCwWhq96GJHNmzTI7WZOM1X9vtltrRySEhJPnvIe8vFX1HKNzjJV4kzBRQjSI4LJJK5vrB9UpZhI3BCv08N79pHqS0hYhLBWVj6sTyphSgtLT6u1irMM--51P0NX7GHJwYaj7EOsOMrjsQwH6er24WjfL8LUhtR_rlEMYnlaPejMkeHZ7nlVf3r_7vPzYXH76sFouLhvHW5kbYi0gIpnkgjDFDcJGdQJaaAlzHeu5ERaUpa1EDqjj3PKulcxS5qSEXtGzanXU7YLZ6n30OxN_6WC8vimEuNEmZu8G0E4o2zpLObWYWeDKUOh4y1AZxIGZonVx1NpPdgedgzFHM8xE5y-j_6Y34YdWDLcKtUXg1a1ADN8nSFkX5xwMgxkhTEkTLhHGWHBS0Jf_oNswxbFYdaAYkwIx-pfamPIBP_ahzHUHUb0QsshQpA4enP-HKquDnXdhhN6X-qzh9ayhMBl-5o2ZUtKr9dWcJUfWxZBShP7OD4z0IWn6mDRdkqZvkqavS9OL-07etfyJFv0N3kjK-g</recordid><startdate>20210906</startdate><enddate>20210906</enddate><creator>Li, Tianqi</creator><creator>Garcia-Gutierrez, Enriqueta</creator><creator>Yara, Daniel A</creator><creator>Scadden, Jacob</creator><creator>Davies, Jade</creator><creator>Hutchins, Chloe</creator><creator>Aydin, Alp</creator><creator>O'Grady, Justin</creator><creator>Narbad, Arjan</creator><creator>Romano, Stefano</creator><creator>Sayavedra, Lizbeth</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7600-1953</orcidid></search><sort><creationdate>20210906</creationdate><title>An optimised protocol for detection of SARS-CoV-2 in stool</title><author>Li, Tianqi ; Garcia-Gutierrez, Enriqueta ; Yara, Daniel A ; Scadden, Jacob ; Davies, Jade ; Hutchins, Chloe ; Aydin, Alp ; O'Grady, Justin ; Narbad, Arjan ; Romano, Stefano ; Sayavedra, Lizbeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clinical-test</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - virology</topic><topic>COVID-19 Nucleic Acid Testing - methods</topic><topic>COVID19</topic><topic>Disease transmission</topic><topic>DNA probes</topic><topic>Extraction procedures</topic><topic>Feces</topic><topic>Feces - virology</topic><topic>FMT</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Limit of Detection</topic><topic>Methodology</topic><topic>Methods</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Molecular diagnostic techniques</topic><topic>Pandemics</topic><topic>Polymerase chain reaction</topic><topic>RNA probes</topic><topic>RNA, Viral - isolation &amp; purification</topic><topic>RT-qPCR</topic><topic>Safety</topic><topic>SARS-CoV-2 - isolation &amp; purification</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Stool</topic><topic>Ultrafiltration</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tianqi</creatorcontrib><creatorcontrib>Garcia-Gutierrez, Enriqueta</creatorcontrib><creatorcontrib>Yara, Daniel A</creatorcontrib><creatorcontrib>Scadden, Jacob</creatorcontrib><creatorcontrib>Davies, Jade</creatorcontrib><creatorcontrib>Hutchins, Chloe</creatorcontrib><creatorcontrib>Aydin, Alp</creatorcontrib><creatorcontrib>O'Grady, Justin</creatorcontrib><creatorcontrib>Narbad, Arjan</creatorcontrib><creatorcontrib>Romano, Stefano</creatorcontrib><creatorcontrib>Sayavedra, Lizbeth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tianqi</au><au>Garcia-Gutierrez, Enriqueta</au><au>Yara, Daniel A</au><au>Scadden, Jacob</au><au>Davies, Jade</au><au>Hutchins, Chloe</au><au>Aydin, Alp</au><au>O'Grady, Justin</au><au>Narbad, Arjan</au><au>Romano, Stefano</au><au>Sayavedra, Lizbeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimised protocol for detection of SARS-CoV-2 in stool</atitle><jtitle>BMC microbiology</jtitle><addtitle>BMC Microbiol</addtitle><date>2021-09-06</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>242</spage><epage>242</epage><pages>242-242</pages><artnum>242</artnum><issn>1471-2180</issn><eissn>1471-2180</eissn><abstract>SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. However, robust and reliable methods are needed to estimate the prevalence and persistence of SARS-CoV-2 in the gut and to ensure the safety of microbiome-based procedures such as faecal microbiota transplant (FMT). The aim of this study was to establish a sensitive and reliable method for detecting SARS-CoV-2 in stool samples. Stool samples from individuals free of SARS-CoV-2 were homogenised in saline buffer and spiked with a known titre of inactivated virus ranging from 50 to 750 viral particles per 100 mg stool. Viral particles were concentrated by ultrafiltration, RNA was extracted, and SARS-CoV-2 was detected via real-time reverse-transcription polymerase chain reaction (RT-qPCR) using the CDC primers and probes. The RNA extraction procedure we used allowed for the detection of SARS-CoV-2 via RT-qPCR in most of the stool samples tested. We could detect as few as 50 viral particles per 100 mg of stool. However, high variability was observed across samples at low viral titres. The primer set targeting the N1 region provided more reliable and precise results and for this primer set our method had a limit of detection of 1 viral particle per mg of stool. Here we describe a sensitive method for detecting SARS-CoV-2 in stool samples. This method can be used to establish the persistence of SARS-CoV-2 in stool and ensure the safety of clinical practices such as FMT.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>34488633</pmid><doi>10.1186/s12866-021-02297-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7600-1953</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2180
ispartof BMC microbiology, 2021-09, Vol.21 (1), p.242-242, Article 242
issn 1471-2180
1471-2180
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c68b9cb353b14be58a3ed5940cd45e4a
source Open Access: PubMed Central; Publicly Available Content Database; Coronavirus Research Database
subjects Clinical-test
Coronaviruses
COVID-19
COVID-19 - diagnosis
COVID-19 - virology
COVID-19 Nucleic Acid Testing - methods
COVID19
Disease transmission
DNA probes
Extraction procedures
Feces
Feces - virology
FMT
Genomes
Health aspects
Humans
Limit of Detection
Methodology
Methods
Microbiomes
Microbiota
Microbiota (Symbiotic organisms)
Molecular diagnostic techniques
Pandemics
Polymerase chain reaction
RNA probes
RNA, Viral - isolation & purification
RT-qPCR
Safety
SARS-CoV-2 - isolation & purification
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Stool
Ultrafiltration
Viral diseases
Viruses
title An optimised protocol for detection of SARS-CoV-2 in stool
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimised%20protocol%20for%20detection%20of%20SARS-CoV-2%20in%20stool&rft.jtitle=BMC%20microbiology&rft.au=Li,%20Tianqi&rft.date=2021-09-06&rft.volume=21&rft.issue=1&rft.spage=242&rft.epage=242&rft.pages=242-242&rft.artnum=242&rft.issn=1471-2180&rft.eissn=1471-2180&rft_id=info:doi/10.1186/s12866-021-02297-w&rft_dat=%3Cgale_doaj_%3EA675233088%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574476043&rft_id=info:pmid/34488633&rft_galeid=A675233088&rfr_iscdi=true