Loading…
An optimised protocol for detection of SARS-CoV-2 in stool
SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. However, robust and...
Saved in:
Published in: | BMC microbiology 2021-09, Vol.21 (1), p.242-242, Article 242 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83 |
---|---|
cites | cdi_FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83 |
container_end_page | 242 |
container_issue | 1 |
container_start_page | 242 |
container_title | BMC microbiology |
container_volume | 21 |
creator | Li, Tianqi Garcia-Gutierrez, Enriqueta Yara, Daniel A Scadden, Jacob Davies, Jade Hutchins, Chloe Aydin, Alp O'Grady, Justin Narbad, Arjan Romano, Stefano Sayavedra, Lizbeth |
description | SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. However, robust and reliable methods are needed to estimate the prevalence and persistence of SARS-CoV-2 in the gut and to ensure the safety of microbiome-based procedures such as faecal microbiota transplant (FMT). The aim of this study was to establish a sensitive and reliable method for detecting SARS-CoV-2 in stool samples.
Stool samples from individuals free of SARS-CoV-2 were homogenised in saline buffer and spiked with a known titre of inactivated virus ranging from 50 to 750 viral particles per 100 mg stool. Viral particles were concentrated by ultrafiltration, RNA was extracted, and SARS-CoV-2 was detected via real-time reverse-transcription polymerase chain reaction (RT-qPCR) using the CDC primers and probes. The RNA extraction procedure we used allowed for the detection of SARS-CoV-2 via RT-qPCR in most of the stool samples tested. We could detect as few as 50 viral particles per 100 mg of stool. However, high variability was observed across samples at low viral titres. The primer set targeting the N1 region provided more reliable and precise results and for this primer set our method had a limit of detection of 1 viral particle per mg of stool.
Here we describe a sensitive method for detecting SARS-CoV-2 in stool samples. This method can be used to establish the persistence of SARS-CoV-2 in stool and ensure the safety of clinical practices such as FMT. |
doi_str_mv | 10.1186/s12866-021-02297-w |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c68b9cb353b14be58a3ed5940cd45e4a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A675233088</galeid><doaj_id>oai_doaj_org_article_c68b9cb353b14be58a3ed5940cd45e4a</doaj_id><sourcerecordid>A675233088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbK3-AS9kwBu9mJrvZLwoLIsfCwWhq96GJHNmzTI7WZOM1X9vtltrRySEhJPnvIe8vFX1HKNzjJV4kzBRQjSI4LJJK5vrB9UpZhI3BCv08N79pHqS0hYhLBWVj6sTyphSgtLT6u1irMM--51P0NX7GHJwYaj7EOsOMrjsQwH6er24WjfL8LUhtR_rlEMYnlaPejMkeHZ7nlVf3r_7vPzYXH76sFouLhvHW5kbYi0gIpnkgjDFDcJGdQJaaAlzHeu5ERaUpa1EDqjj3PKulcxS5qSEXtGzanXU7YLZ6n30OxN_6WC8vimEuNEmZu8G0E4o2zpLObWYWeDKUOh4y1AZxIGZonVx1NpPdgedgzFHM8xE5y-j_6Y34YdWDLcKtUXg1a1ADN8nSFkX5xwMgxkhTEkTLhHGWHBS0Jf_oNswxbFYdaAYkwIx-pfamPIBP_ahzHUHUb0QsshQpA4enP-HKquDnXdhhN6X-qzh9ayhMBl-5o2ZUtKr9dWcJUfWxZBShP7OD4z0IWn6mDRdkqZvkqavS9OL-07etfyJFv0N3kjK-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574476043</pqid></control><display><type>article</type><title>An optimised protocol for detection of SARS-CoV-2 in stool</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Li, Tianqi ; Garcia-Gutierrez, Enriqueta ; Yara, Daniel A ; Scadden, Jacob ; Davies, Jade ; Hutchins, Chloe ; Aydin, Alp ; O'Grady, Justin ; Narbad, Arjan ; Romano, Stefano ; Sayavedra, Lizbeth</creator><creatorcontrib>Li, Tianqi ; Garcia-Gutierrez, Enriqueta ; Yara, Daniel A ; Scadden, Jacob ; Davies, Jade ; Hutchins, Chloe ; Aydin, Alp ; O'Grady, Justin ; Narbad, Arjan ; Romano, Stefano ; Sayavedra, Lizbeth</creatorcontrib><description>SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. However, robust and reliable methods are needed to estimate the prevalence and persistence of SARS-CoV-2 in the gut and to ensure the safety of microbiome-based procedures such as faecal microbiota transplant (FMT). The aim of this study was to establish a sensitive and reliable method for detecting SARS-CoV-2 in stool samples.
Stool samples from individuals free of SARS-CoV-2 were homogenised in saline buffer and spiked with a known titre of inactivated virus ranging from 50 to 750 viral particles per 100 mg stool. Viral particles were concentrated by ultrafiltration, RNA was extracted, and SARS-CoV-2 was detected via real-time reverse-transcription polymerase chain reaction (RT-qPCR) using the CDC primers and probes. The RNA extraction procedure we used allowed for the detection of SARS-CoV-2 via RT-qPCR in most of the stool samples tested. We could detect as few as 50 viral particles per 100 mg of stool. However, high variability was observed across samples at low viral titres. The primer set targeting the N1 region provided more reliable and precise results and for this primer set our method had a limit of detection of 1 viral particle per mg of stool.
Here we describe a sensitive method for detecting SARS-CoV-2 in stool samples. This method can be used to establish the persistence of SARS-CoV-2 in stool and ensure the safety of clinical practices such as FMT.</description><identifier>ISSN: 1471-2180</identifier><identifier>EISSN: 1471-2180</identifier><identifier>DOI: 10.1186/s12866-021-02297-w</identifier><identifier>PMID: 34488633</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Clinical-test ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - virology ; COVID-19 Nucleic Acid Testing - methods ; COVID19 ; Disease transmission ; DNA probes ; Extraction procedures ; Feces ; Feces - virology ; FMT ; Genomes ; Health aspects ; Humans ; Limit of Detection ; Methodology ; Methods ; Microbiomes ; Microbiota ; Microbiota (Symbiotic organisms) ; Molecular diagnostic techniques ; Pandemics ; Polymerase chain reaction ; RNA probes ; RNA, Viral - isolation & purification ; RT-qPCR ; Safety ; SARS-CoV-2 - isolation & purification ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Stool ; Ultrafiltration ; Viral diseases ; Viruses</subject><ispartof>BMC microbiology, 2021-09, Vol.21 (1), p.242-242, Article 242</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83</citedby><cites>FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83</cites><orcidid>0000-0002-7600-1953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419809/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2574476043?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,38495,43874,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34488633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tianqi</creatorcontrib><creatorcontrib>Garcia-Gutierrez, Enriqueta</creatorcontrib><creatorcontrib>Yara, Daniel A</creatorcontrib><creatorcontrib>Scadden, Jacob</creatorcontrib><creatorcontrib>Davies, Jade</creatorcontrib><creatorcontrib>Hutchins, Chloe</creatorcontrib><creatorcontrib>Aydin, Alp</creatorcontrib><creatorcontrib>O'Grady, Justin</creatorcontrib><creatorcontrib>Narbad, Arjan</creatorcontrib><creatorcontrib>Romano, Stefano</creatorcontrib><creatorcontrib>Sayavedra, Lizbeth</creatorcontrib><title>An optimised protocol for detection of SARS-CoV-2 in stool</title><title>BMC microbiology</title><addtitle>BMC Microbiol</addtitle><description>SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. However, robust and reliable methods are needed to estimate the prevalence and persistence of SARS-CoV-2 in the gut and to ensure the safety of microbiome-based procedures such as faecal microbiota transplant (FMT). The aim of this study was to establish a sensitive and reliable method for detecting SARS-CoV-2 in stool samples.
Stool samples from individuals free of SARS-CoV-2 were homogenised in saline buffer and spiked with a known titre of inactivated virus ranging from 50 to 750 viral particles per 100 mg stool. Viral particles were concentrated by ultrafiltration, RNA was extracted, and SARS-CoV-2 was detected via real-time reverse-transcription polymerase chain reaction (RT-qPCR) using the CDC primers and probes. The RNA extraction procedure we used allowed for the detection of SARS-CoV-2 via RT-qPCR in most of the stool samples tested. We could detect as few as 50 viral particles per 100 mg of stool. However, high variability was observed across samples at low viral titres. The primer set targeting the N1 region provided more reliable and precise results and for this primer set our method had a limit of detection of 1 viral particle per mg of stool.
Here we describe a sensitive method for detecting SARS-CoV-2 in stool samples. This method can be used to establish the persistence of SARS-CoV-2 in stool and ensure the safety of clinical practices such as FMT.</description><subject>Clinical-test</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - virology</subject><subject>COVID-19 Nucleic Acid Testing - methods</subject><subject>COVID19</subject><subject>Disease transmission</subject><subject>DNA probes</subject><subject>Extraction procedures</subject><subject>Feces</subject><subject>Feces - virology</subject><subject>FMT</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Limit of Detection</subject><subject>Methodology</subject><subject>Methods</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Molecular diagnostic techniques</subject><subject>Pandemics</subject><subject>Polymerase chain reaction</subject><subject>RNA probes</subject><subject>RNA, Viral - isolation & purification</subject><subject>RT-qPCR</subject><subject>Safety</subject><subject>SARS-CoV-2 - isolation & purification</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Stool</subject><subject>Ultrafiltration</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>1471-2180</issn><issn>1471-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdRbK3-AS9kwBu9mJrvZLwoLIsfCwWhq96GJHNmzTI7WZOM1X9vtltrRySEhJPnvIe8vFX1HKNzjJV4kzBRQjSI4LJJK5vrB9UpZhI3BCv08N79pHqS0hYhLBWVj6sTyphSgtLT6u1irMM--51P0NX7GHJwYaj7EOsOMrjsQwH6er24WjfL8LUhtR_rlEMYnlaPejMkeHZ7nlVf3r_7vPzYXH76sFouLhvHW5kbYi0gIpnkgjDFDcJGdQJaaAlzHeu5ERaUpa1EDqjj3PKulcxS5qSEXtGzanXU7YLZ6n30OxN_6WC8vimEuNEmZu8G0E4o2zpLObWYWeDKUOh4y1AZxIGZonVx1NpPdgedgzFHM8xE5y-j_6Y34YdWDLcKtUXg1a1ADN8nSFkX5xwMgxkhTEkTLhHGWHBS0Jf_oNswxbFYdaAYkwIx-pfamPIBP_ahzHUHUb0QsshQpA4enP-HKquDnXdhhN6X-qzh9ayhMBl-5o2ZUtKr9dWcJUfWxZBShP7OD4z0IWn6mDRdkqZvkqavS9OL-07etfyJFv0N3kjK-g</recordid><startdate>20210906</startdate><enddate>20210906</enddate><creator>Li, Tianqi</creator><creator>Garcia-Gutierrez, Enriqueta</creator><creator>Yara, Daniel A</creator><creator>Scadden, Jacob</creator><creator>Davies, Jade</creator><creator>Hutchins, Chloe</creator><creator>Aydin, Alp</creator><creator>O'Grady, Justin</creator><creator>Narbad, Arjan</creator><creator>Romano, Stefano</creator><creator>Sayavedra, Lizbeth</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7600-1953</orcidid></search><sort><creationdate>20210906</creationdate><title>An optimised protocol for detection of SARS-CoV-2 in stool</title><author>Li, Tianqi ; Garcia-Gutierrez, Enriqueta ; Yara, Daniel A ; Scadden, Jacob ; Davies, Jade ; Hutchins, Chloe ; Aydin, Alp ; O'Grady, Justin ; Narbad, Arjan ; Romano, Stefano ; Sayavedra, Lizbeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clinical-test</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - virology</topic><topic>COVID-19 Nucleic Acid Testing - methods</topic><topic>COVID19</topic><topic>Disease transmission</topic><topic>DNA probes</topic><topic>Extraction procedures</topic><topic>Feces</topic><topic>Feces - virology</topic><topic>FMT</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Limit of Detection</topic><topic>Methodology</topic><topic>Methods</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Molecular diagnostic techniques</topic><topic>Pandemics</topic><topic>Polymerase chain reaction</topic><topic>RNA probes</topic><topic>RNA, Viral - isolation & purification</topic><topic>RT-qPCR</topic><topic>Safety</topic><topic>SARS-CoV-2 - isolation & purification</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Stool</topic><topic>Ultrafiltration</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tianqi</creatorcontrib><creatorcontrib>Garcia-Gutierrez, Enriqueta</creatorcontrib><creatorcontrib>Yara, Daniel A</creatorcontrib><creatorcontrib>Scadden, Jacob</creatorcontrib><creatorcontrib>Davies, Jade</creatorcontrib><creatorcontrib>Hutchins, Chloe</creatorcontrib><creatorcontrib>Aydin, Alp</creatorcontrib><creatorcontrib>O'Grady, Justin</creatorcontrib><creatorcontrib>Narbad, Arjan</creatorcontrib><creatorcontrib>Romano, Stefano</creatorcontrib><creatorcontrib>Sayavedra, Lizbeth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tianqi</au><au>Garcia-Gutierrez, Enriqueta</au><au>Yara, Daniel A</au><au>Scadden, Jacob</au><au>Davies, Jade</au><au>Hutchins, Chloe</au><au>Aydin, Alp</au><au>O'Grady, Justin</au><au>Narbad, Arjan</au><au>Romano, Stefano</au><au>Sayavedra, Lizbeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimised protocol for detection of SARS-CoV-2 in stool</atitle><jtitle>BMC microbiology</jtitle><addtitle>BMC Microbiol</addtitle><date>2021-09-06</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>242</spage><epage>242</epage><pages>242-242</pages><artnum>242</artnum><issn>1471-2180</issn><eissn>1471-2180</eissn><abstract>SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. However, robust and reliable methods are needed to estimate the prevalence and persistence of SARS-CoV-2 in the gut and to ensure the safety of microbiome-based procedures such as faecal microbiota transplant (FMT). The aim of this study was to establish a sensitive and reliable method for detecting SARS-CoV-2 in stool samples.
Stool samples from individuals free of SARS-CoV-2 were homogenised in saline buffer and spiked with a known titre of inactivated virus ranging from 50 to 750 viral particles per 100 mg stool. Viral particles were concentrated by ultrafiltration, RNA was extracted, and SARS-CoV-2 was detected via real-time reverse-transcription polymerase chain reaction (RT-qPCR) using the CDC primers and probes. The RNA extraction procedure we used allowed for the detection of SARS-CoV-2 via RT-qPCR in most of the stool samples tested. We could detect as few as 50 viral particles per 100 mg of stool. However, high variability was observed across samples at low viral titres. The primer set targeting the N1 region provided more reliable and precise results and for this primer set our method had a limit of detection of 1 viral particle per mg of stool.
Here we describe a sensitive method for detecting SARS-CoV-2 in stool samples. This method can be used to establish the persistence of SARS-CoV-2 in stool and ensure the safety of clinical practices such as FMT.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>34488633</pmid><doi>10.1186/s12866-021-02297-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7600-1953</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2180 |
ispartof | BMC microbiology, 2021-09, Vol.21 (1), p.242-242, Article 242 |
issn | 1471-2180 1471-2180 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c68b9cb353b14be58a3ed5940cd45e4a |
source | Open Access: PubMed Central; Publicly Available Content Database; Coronavirus Research Database |
subjects | Clinical-test Coronaviruses COVID-19 COVID-19 - diagnosis COVID-19 - virology COVID-19 Nucleic Acid Testing - methods COVID19 Disease transmission DNA probes Extraction procedures Feces Feces - virology FMT Genomes Health aspects Humans Limit of Detection Methodology Methods Microbiomes Microbiota Microbiota (Symbiotic organisms) Molecular diagnostic techniques Pandemics Polymerase chain reaction RNA probes RNA, Viral - isolation & purification RT-qPCR Safety SARS-CoV-2 - isolation & purification Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Stool Ultrafiltration Viral diseases Viruses |
title | An optimised protocol for detection of SARS-CoV-2 in stool |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimised%20protocol%20for%20detection%20of%20SARS-CoV-2%20in%20stool&rft.jtitle=BMC%20microbiology&rft.au=Li,%20Tianqi&rft.date=2021-09-06&rft.volume=21&rft.issue=1&rft.spage=242&rft.epage=242&rft.pages=242-242&rft.artnum=242&rft.issn=1471-2180&rft.eissn=1471-2180&rft_id=info:doi/10.1186/s12866-021-02297-w&rft_dat=%3Cgale_doaj_%3EA675233088%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-2bbe02747562485a01a8d6e9e924cd4f5a6be8b3970ce3c55b5d974b34c77ef83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574476043&rft_id=info:pmid/34488633&rft_galeid=A675233088&rfr_iscdi=true |