Loading…

Machine learning-based analysis of cancer cell-derived vesicular proteins revealed significant tumor-specificity and predictive potential of extracellular vesicles for cell invasion and proliferation - A meta-analysis

Although interest in the role of extracellular vesicles (EV) in oncology is growing, not all potential aspects have been investigated. In this meta-analysis, data regarding (i) the EV proteome and (ii) the invasion and proliferation capacity of the NCI-60 tumor cell lines (60 cell lines from nine di...

Full description

Saved in:
Bibliographic Details
Published in:Cell communication and signaling 2023-11, Vol.21 (1), p.333-333, Article 333
Main Authors: Bukva, Matyas, Dobra, Gabriella, Gyukity-Sebestyen, Edina, Boroczky, Timea, Korsos, Marietta Margareta, Meckes, Jr, David G, Horvath, Peter, Buzas, Krisztina, Harmati, Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-9fb5d3d1cbdb66636cb15c22d85cde0d2189c15fe49751a18d30ddac16c566133
cites cdi_FETCH-LOGICAL-c441t-9fb5d3d1cbdb66636cb15c22d85cde0d2189c15fe49751a18d30ddac16c566133
container_end_page 333
container_issue 1
container_start_page 333
container_title Cell communication and signaling
container_volume 21
creator Bukva, Matyas
Dobra, Gabriella
Gyukity-Sebestyen, Edina
Boroczky, Timea
Korsos, Marietta Margareta
Meckes, Jr, David G
Horvath, Peter
Buzas, Krisztina
Harmati, Maria
description Although interest in the role of extracellular vesicles (EV) in oncology is growing, not all potential aspects have been investigated. In this meta-analysis, data regarding (i) the EV proteome and (ii) the invasion and proliferation capacity of the NCI-60 tumor cell lines (60 cell lines from nine different tumor types) were analyzed using machine learning methods. On the basis of the entire proteome or the proteins shared by all EV samples, 60 cell lines were classified into the nine tumor types using multiple logistic regression. Then, utilizing the Least Absolute Shrinkage and Selection Operator, we constructed a discriminative protein panel, upon which the samples were reclassified and pathway analyses were performed. These panels were validated using clinical data (n = 4,665) from Human Protein Atlas. Classification models based on the entire proteome, shared proteins, and discriminative protein panel were able to distinguish the nine tumor types with 49.15%, 69.10%, and 91.68% accuracy, respectively. Invasion and proliferation capacity of the 60 cell lines were predicted with R  = 0.68 and R  = 0.62 (p 
doi_str_mv 10.1186/s12964-023-01344-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c69c12b1de26431fa3df709d00263c33</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c69c12b1de26431fa3df709d00263c33</doaj_id><sourcerecordid>2892267704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-9fb5d3d1cbdb66636cb15c22d85cde0d2189c15fe49751a18d30ddac16c566133</originalsourceid><addsrcrecordid>eNpdks9u1DAQxiMEoqXwAhyQJS5cDB47cZJjVfGnUhEXkLhZjj1ZvMrai-2suo_K2-BsthXiZGv8fb-Zkb-qeg3sPUAnPyTgvawp44IyEHVNmyfVJdRtRzuAn0__uV9UL1LaMsbrpm6fVxei7TsJsrms_nzV5pfzSCbU0Tu_oYNOaIn2ejoml0gYidHeYCQGp4lajO5Q3g-YnJknHck-hozOJxLxgHoqb8ltvBtdsWWS512INO3RLBWXj4VsiwetM7mQyL64fXZ6WjrhfY566XMin3pMmMgY1u7E-YNOLvgzJExuxKjzUqHkmuwwa_ow-cvq2ainhK_O51X149PH7zdf6N23z7c313fU1DVk2o9DY4UFM9hBSimkGaAxnNuuMRaZ5dD1BpoR675tQENnBbNWG5CmkRKEuKpuV64Neqv20e10PKqgnToVQtwoHfOyiDKyoPgAFrmsBYxa2LFlvS0fI4URC-vdyiq7_Z4xZbVzadlcewxzUrzrOZdty-oiffufdBvmWHYvqp5xKES5qPiqMjGkFHF8HBCYWkKk1hCpEiJ1CpFqiunNGT0PO7SPlofUiL9-Lsg3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902126364</pqid></control><display><type>article</type><title>Machine learning-based analysis of cancer cell-derived vesicular proteins revealed significant tumor-specificity and predictive potential of extracellular vesicles for cell invasion and proliferation - A meta-analysis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Bukva, Matyas ; Dobra, Gabriella ; Gyukity-Sebestyen, Edina ; Boroczky, Timea ; Korsos, Marietta Margareta ; Meckes, Jr, David G ; Horvath, Peter ; Buzas, Krisztina ; Harmati, Maria</creator><creatorcontrib>Bukva, Matyas ; Dobra, Gabriella ; Gyukity-Sebestyen, Edina ; Boroczky, Timea ; Korsos, Marietta Margareta ; Meckes, Jr, David G ; Horvath, Peter ; Buzas, Krisztina ; Harmati, Maria</creatorcontrib><description>Although interest in the role of extracellular vesicles (EV) in oncology is growing, not all potential aspects have been investigated. In this meta-analysis, data regarding (i) the EV proteome and (ii) the invasion and proliferation capacity of the NCI-60 tumor cell lines (60 cell lines from nine different tumor types) were analyzed using machine learning methods. On the basis of the entire proteome or the proteins shared by all EV samples, 60 cell lines were classified into the nine tumor types using multiple logistic regression. Then, utilizing the Least Absolute Shrinkage and Selection Operator, we constructed a discriminative protein panel, upon which the samples were reclassified and pathway analyses were performed. These panels were validated using clinical data (n = 4,665) from Human Protein Atlas. Classification models based on the entire proteome, shared proteins, and discriminative protein panel were able to distinguish the nine tumor types with 49.15%, 69.10%, and 91.68% accuracy, respectively. Invasion and proliferation capacity of the 60 cell lines were predicted with R  = 0.68 and R  = 0.62 (p &lt; 0.0001). The results of the Reactome pathway analysis of the discriminative protein panel suggest that the molecular content of EVs might be indicative of tumor-specific biological processes. Integrating in vitro EV proteomic data, cell physiological characteristics, and clinical data of various tumor types illuminates the diagnostic, prognostic, and therapeutic potential of EVs. Video Abstract.</description><identifier>ISSN: 1478-811X</identifier><identifier>EISSN: 1478-811X</identifier><identifier>DOI: 10.1186/s12964-023-01344-5</identifier><identifier>PMID: 37986165</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Bioinformatics ; Biomarkers ; Cancer ; Cell Proliferation ; Classification ; Datasets ; Extracellular vesicles ; Extracellular Vesicles - metabolism ; Gene expression ; Humans ; Invasion ; Learning algorithms ; Leukemia ; Machine learning ; Meta-analysis ; Metastasis ; NCI-60 ; Neoplasms - pathology ; Prediction ; Proliferation ; Proteins ; Proteome - metabolism ; Proteomes ; Proteomics ; Proteomics - methods ; Tumor cell lines ; Tumors</subject><ispartof>Cell communication and signaling, 2023-11, Vol.21 (1), p.333-333, Article 333</ispartof><rights>2023. The Author(s).</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-9fb5d3d1cbdb66636cb15c22d85cde0d2189c15fe49751a18d30ddac16c566133</citedby><cites>FETCH-LOGICAL-c441t-9fb5d3d1cbdb66636cb15c22d85cde0d2189c15fe49751a18d30ddac16c566133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2902126364?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37986165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bukva, Matyas</creatorcontrib><creatorcontrib>Dobra, Gabriella</creatorcontrib><creatorcontrib>Gyukity-Sebestyen, Edina</creatorcontrib><creatorcontrib>Boroczky, Timea</creatorcontrib><creatorcontrib>Korsos, Marietta Margareta</creatorcontrib><creatorcontrib>Meckes, Jr, David G</creatorcontrib><creatorcontrib>Horvath, Peter</creatorcontrib><creatorcontrib>Buzas, Krisztina</creatorcontrib><creatorcontrib>Harmati, Maria</creatorcontrib><title>Machine learning-based analysis of cancer cell-derived vesicular proteins revealed significant tumor-specificity and predictive potential of extracellular vesicles for cell invasion and proliferation - A meta-analysis</title><title>Cell communication and signaling</title><addtitle>Cell Commun Signal</addtitle><description>Although interest in the role of extracellular vesicles (EV) in oncology is growing, not all potential aspects have been investigated. In this meta-analysis, data regarding (i) the EV proteome and (ii) the invasion and proliferation capacity of the NCI-60 tumor cell lines (60 cell lines from nine different tumor types) were analyzed using machine learning methods. On the basis of the entire proteome or the proteins shared by all EV samples, 60 cell lines were classified into the nine tumor types using multiple logistic regression. Then, utilizing the Least Absolute Shrinkage and Selection Operator, we constructed a discriminative protein panel, upon which the samples were reclassified and pathway analyses were performed. These panels were validated using clinical data (n = 4,665) from Human Protein Atlas. Classification models based on the entire proteome, shared proteins, and discriminative protein panel were able to distinguish the nine tumor types with 49.15%, 69.10%, and 91.68% accuracy, respectively. Invasion and proliferation capacity of the 60 cell lines were predicted with R  = 0.68 and R  = 0.62 (p &lt; 0.0001). The results of the Reactome pathway analysis of the discriminative protein panel suggest that the molecular content of EVs might be indicative of tumor-specific biological processes. Integrating in vitro EV proteomic data, cell physiological characteristics, and clinical data of various tumor types illuminates the diagnostic, prognostic, and therapeutic potential of EVs. Video Abstract.</description><subject>Bioinformatics</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Cell Proliferation</subject><subject>Classification</subject><subject>Datasets</subject><subject>Extracellular vesicles</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Invasion</subject><subject>Learning algorithms</subject><subject>Leukemia</subject><subject>Machine learning</subject><subject>Meta-analysis</subject><subject>Metastasis</subject><subject>NCI-60</subject><subject>Neoplasms - pathology</subject><subject>Prediction</subject><subject>Proliferation</subject><subject>Proteins</subject><subject>Proteome - metabolism</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><issn>1478-811X</issn><issn>1478-811X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9u1DAQxiMEoqXwAhyQJS5cDB47cZJjVfGnUhEXkLhZjj1ZvMrai-2suo_K2-BsthXiZGv8fb-Zkb-qeg3sPUAnPyTgvawp44IyEHVNmyfVJdRtRzuAn0__uV9UL1LaMsbrpm6fVxei7TsJsrms_nzV5pfzSCbU0Tu_oYNOaIn2ejoml0gYidHeYCQGp4lajO5Q3g-YnJknHck-hozOJxLxgHoqb8ltvBtdsWWS512INO3RLBWXj4VsiwetM7mQyL64fXZ6WjrhfY566XMin3pMmMgY1u7E-YNOLvgzJExuxKjzUqHkmuwwa_ow-cvq2ainhK_O51X149PH7zdf6N23z7c313fU1DVk2o9DY4UFM9hBSimkGaAxnNuuMRaZ5dD1BpoR675tQENnBbNWG5CmkRKEuKpuV64Neqv20e10PKqgnToVQtwoHfOyiDKyoPgAFrmsBYxa2LFlvS0fI4URC-vdyiq7_Z4xZbVzadlcewxzUrzrOZdty-oiffufdBvmWHYvqp5xKES5qPiqMjGkFHF8HBCYWkKk1hCpEiJ1CpFqiunNGT0PO7SPlofUiL9-Lsg3</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Bukva, Matyas</creator><creator>Dobra, Gabriella</creator><creator>Gyukity-Sebestyen, Edina</creator><creator>Boroczky, Timea</creator><creator>Korsos, Marietta Margareta</creator><creator>Meckes, Jr, David G</creator><creator>Horvath, Peter</creator><creator>Buzas, Krisztina</creator><creator>Harmati, Maria</creator><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20231120</creationdate><title>Machine learning-based analysis of cancer cell-derived vesicular proteins revealed significant tumor-specificity and predictive potential of extracellular vesicles for cell invasion and proliferation - A meta-analysis</title><author>Bukva, Matyas ; Dobra, Gabriella ; Gyukity-Sebestyen, Edina ; Boroczky, Timea ; Korsos, Marietta Margareta ; Meckes, Jr, David G ; Horvath, Peter ; Buzas, Krisztina ; Harmati, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-9fb5d3d1cbdb66636cb15c22d85cde0d2189c15fe49751a18d30ddac16c566133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioinformatics</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Cell Proliferation</topic><topic>Classification</topic><topic>Datasets</topic><topic>Extracellular vesicles</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Invasion</topic><topic>Learning algorithms</topic><topic>Leukemia</topic><topic>Machine learning</topic><topic>Meta-analysis</topic><topic>Metastasis</topic><topic>NCI-60</topic><topic>Neoplasms - pathology</topic><topic>Prediction</topic><topic>Proliferation</topic><topic>Proteins</topic><topic>Proteome - metabolism</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bukva, Matyas</creatorcontrib><creatorcontrib>Dobra, Gabriella</creatorcontrib><creatorcontrib>Gyukity-Sebestyen, Edina</creatorcontrib><creatorcontrib>Boroczky, Timea</creatorcontrib><creatorcontrib>Korsos, Marietta Margareta</creatorcontrib><creatorcontrib>Meckes, Jr, David G</creatorcontrib><creatorcontrib>Horvath, Peter</creatorcontrib><creatorcontrib>Buzas, Krisztina</creatorcontrib><creatorcontrib>Harmati, Maria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ</collection><jtitle>Cell communication and signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bukva, Matyas</au><au>Dobra, Gabriella</au><au>Gyukity-Sebestyen, Edina</au><au>Boroczky, Timea</au><au>Korsos, Marietta Margareta</au><au>Meckes, Jr, David G</au><au>Horvath, Peter</au><au>Buzas, Krisztina</au><au>Harmati, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-based analysis of cancer cell-derived vesicular proteins revealed significant tumor-specificity and predictive potential of extracellular vesicles for cell invasion and proliferation - A meta-analysis</atitle><jtitle>Cell communication and signaling</jtitle><addtitle>Cell Commun Signal</addtitle><date>2023-11-20</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>333</spage><epage>333</epage><pages>333-333</pages><artnum>333</artnum><issn>1478-811X</issn><eissn>1478-811X</eissn><abstract>Although interest in the role of extracellular vesicles (EV) in oncology is growing, not all potential aspects have been investigated. In this meta-analysis, data regarding (i) the EV proteome and (ii) the invasion and proliferation capacity of the NCI-60 tumor cell lines (60 cell lines from nine different tumor types) were analyzed using machine learning methods. On the basis of the entire proteome or the proteins shared by all EV samples, 60 cell lines were classified into the nine tumor types using multiple logistic regression. Then, utilizing the Least Absolute Shrinkage and Selection Operator, we constructed a discriminative protein panel, upon which the samples were reclassified and pathway analyses were performed. These panels were validated using clinical data (n = 4,665) from Human Protein Atlas. Classification models based on the entire proteome, shared proteins, and discriminative protein panel were able to distinguish the nine tumor types with 49.15%, 69.10%, and 91.68% accuracy, respectively. Invasion and proliferation capacity of the 60 cell lines were predicted with R  = 0.68 and R  = 0.62 (p &lt; 0.0001). The results of the Reactome pathway analysis of the discriminative protein panel suggest that the molecular content of EVs might be indicative of tumor-specific biological processes. Integrating in vitro EV proteomic data, cell physiological characteristics, and clinical data of various tumor types illuminates the diagnostic, prognostic, and therapeutic potential of EVs. Video Abstract.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>37986165</pmid><doi>10.1186/s12964-023-01344-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1478-811X
ispartof Cell communication and signaling, 2023-11, Vol.21 (1), p.333-333, Article 333
issn 1478-811X
1478-811X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c69c12b1de26431fa3df709d00263c33
source Publicly Available Content Database; PubMed Central
subjects Bioinformatics
Biomarkers
Cancer
Cell Proliferation
Classification
Datasets
Extracellular vesicles
Extracellular Vesicles - metabolism
Gene expression
Humans
Invasion
Learning algorithms
Leukemia
Machine learning
Meta-analysis
Metastasis
NCI-60
Neoplasms - pathology
Prediction
Proliferation
Proteins
Proteome - metabolism
Proteomes
Proteomics
Proteomics - methods
Tumor cell lines
Tumors
title Machine learning-based analysis of cancer cell-derived vesicular proteins revealed significant tumor-specificity and predictive potential of extracellular vesicles for cell invasion and proliferation - A meta-analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-based%20analysis%20of%20cancer%20cell-derived%20vesicular%20proteins%20revealed%20significant%20tumor-specificity%20and%20predictive%20potential%20of%20extracellular%20vesicles%20for%20cell%20invasion%20and%20proliferation%20-%20A%20meta-analysis&rft.jtitle=Cell%20communication%20and%20signaling&rft.au=Bukva,%20Matyas&rft.date=2023-11-20&rft.volume=21&rft.issue=1&rft.spage=333&rft.epage=333&rft.pages=333-333&rft.artnum=333&rft.issn=1478-811X&rft.eissn=1478-811X&rft_id=info:doi/10.1186/s12964-023-01344-5&rft_dat=%3Cproquest_doaj_%3E2892267704%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-9fb5d3d1cbdb66636cb15c22d85cde0d2189c15fe49751a18d30ddac16c566133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902126364&rft_id=info:pmid/37986165&rfr_iscdi=true