Loading…

Transcriptomic Study of Substrate-Specific Transport Mechanisms for Iron and Carbon in the Marine Copiotroph Alteromonas macleodii

Iron is an essential micronutrient for all microbial growth in the marine environment, and in heterotrophic bacteria, iron is tightly linked to carbon metabolism due to its central role as a cofactor in enzymes of the respiratory chain. Here, we present the iron- and carbon-regulated transcriptomes...

Full description

Saved in:
Bibliographic Details
Published in:mSystems 2020-04, Vol.5 (2)
Main Authors: Manck, Lauren E, Espinoza, Josh L, Dupont, Christopher L, Barbeau, Katherine A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iron is an essential micronutrient for all microbial growth in the marine environment, and in heterotrophic bacteria, iron is tightly linked to carbon metabolism due to its central role as a cofactor in enzymes of the respiratory chain. Here, we present the iron- and carbon-regulated transcriptomes of a representative marine copiotroph, ATCC 27126, and characterize its cellular transport mechanisms. ATCC 27126 has distinct metabolic responses to iron and carbon limitation and, accordingly, uses distinct sets of TonB-dependent transporters for the acquisition of iron and carbon. These distinct sets of TonB-dependent transporters were of a similar number, indicating that the diversity of carbon and iron substrates available to ATCC 27126 is of a similar scale. For the first time in a marine bacterium, we have also identified six characteristic inner membrane permeases for the transport of siderophores via an ATPase-independent mechanism. An examination of the distribution of specific TonB-dependent transporters in 31 genomes across the genus points to niche specialization in transport capacity, particularly for iron. We conclude that the substrate-specific bioavailability of both iron and carbon in the marine environment will likely be a key control on the processing of organic matter through the microbial loop. As the major facilitators of the turnover of organic matter in the marine environment, the ability of heterotrophic bacteria to acquire specific compounds within the diverse range of dissolved organic matter will affect the regeneration of essential nutrients such as iron and carbon. TonB-dependent transporters are a prevalent cellular tool in Gram-negative bacteria that allow a relatively high-molecular-weight fraction of organic matter to be directly accessed. However, these transporters are not well characterized in marine bacteria, limiting our understanding of the flow of specific substrates through the marine microbial loop. Here, we characterize the TonB-dependent transporters responsible for iron and carbon acquisition in a representative marine copiotroph and examine their distribution across the genus We provide evidence that substrate-specific bioavailability is niche specific, particularly for iron complexes, indicating that transport capacity may serve as a significant control on microbial community dynamics and the resultant cycling of organic matter.
ISSN:2379-5077
2379-5077
DOI:10.1128/mSystems.00070-20