Loading…

Air-Lift Pumping System for Hybrid Mining of Rare-Earth Elements-Rich Mud and Polymetallic Nodules around Minamitorishima Island

REE-rich mud under the seabed at a 5500–5700 m water depth around Minamitorishima island and polymetallic nodules buried in the deep seabed are very promising and attractive to explore and develop. REEs are critical to develop due to the recent paradigm shift to renewable energies based on green tec...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering 2024-09, Vol.12 (9), p.1470
Main Authors: Shimizu, Yoshiyuki, Sugihara, Masatoshi, Fujinaga, Koichiro, Nakamura, Kentaro, Kato, Yasuhiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:REE-rich mud under the seabed at a 5500–5700 m water depth around Minamitorishima island and polymetallic nodules buried in the deep seabed are very promising and attractive to explore and develop. REEs are critical to develop due to the recent paradigm shift to renewable energies based on green technologies. Numerical analysis using a one-dimensional drift–flux model for gas–liquid–solid three-phase flow and gas–liquid two-phase flow was conducted to examine the characteristics of an air-lift pumping system for mining these mineral resources. Empirical equations of REE-rich mud and the physical properties of polymetallic nodules around Minamitorishima island were utilized in the analysis. As a result, the characteristics, i.e., the performance of the system, were clarified in three cases: REE-rich mud, polymetallic nodules, and both. The time transient, i.e., the unsteady characteristics of the system, was also shown, such as the start-up and feeding slurry with REE-rich mud and polymetallic nodules. The findings from the unsteady characteristics will be useful in considering the operation of a real project or a commercial system in the future.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse12091470