Loading…

The spatial Functional Renormalization Group and Hadamard states on cosmological spacetimes

A spatial variant of the Functional Renormalization Group (FRG) is introduced on (Lorentzian signature) globally hyperbolic spacetimes. Through its perturbative expansion it is argued that such a FRG must inevitably be state dependent and that it should be based on a Hadamard state. A concrete imple...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear physics. B 2022-07, Vol.980, p.115814, Article 115814
Main Authors: Banerjee, R., Niedermaier, M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A spatial variant of the Functional Renormalization Group (FRG) is introduced on (Lorentzian signature) globally hyperbolic spacetimes. Through its perturbative expansion it is argued that such a FRG must inevitably be state dependent and that it should be based on a Hadamard state. A concrete implementation is presented for scalar quantum fields on flat Friedmann-Lemaître spacetimes. The universal ultraviolet behavior of Hadamard states allows the flow to be matched to the one-loop renormalized flow (where strict removal of the ultraviolet cutoff requires a tower of potentials, one for each power of the Ricci scalar). The state-dependent infrared behavior of the flow is investigated for States of Low Energy, which are Hadamard states deemed to be viable vacua for a pre-inflationary period. A simple time-dependent infrared fixed point equation (resembling that in Minkowski space) arises for any scale factor, with analytically computable corrections coding the non-perturbative ramifications of the Hadamard property in the infrared.
ISSN:0550-3213
1873-1562
DOI:10.1016/j.nuclphysb.2022.115814