Loading…
Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing
The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria—a major presumptive oxidative stressor—produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zyg...
Saved in:
Published in: | Antioxidants 2020-09, Vol.9 (10), p.933 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613 |
container_end_page | |
container_issue | 10 |
container_start_page | 933 |
container_title | Antioxidants |
container_volume | 9 |
creator | Cobley, James N. |
description | The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria—a major presumptive oxidative stressor—produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling. |
doi_str_mv | 10.3390/antiox9100933 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c712764730f24fdab48a669bd87a009a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c712764730f24fdab48a669bd87a009a</doaj_id><sourcerecordid>2546883204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhi0EolXokbslLhxY8NeubQ5IVcVHRKui0p6tWdubOGzsYO_S8u8xTVURfPF45tUznleD0EtK3nKuyTuIU0h3mhKiOX-CjhmRXcM1o0__iY_QSSkbUo-mXBH9HB1xTgjnHTtG6cLbNcRQtgWnAV-EKdl1ii4HGPHV5Xf8LSc329om4hDxaSmhTN7hK797LLzH12uPv8Z0G9_gqYY38cf-AdHdJ5ZxymE1h7h6gZ4NMBZ_8nAv0M2nj9dnX5rzy8_Ls9PzxnKlpsYROTDNeto6BR4GyigRUrOBCAGCSuIBRGvZQFXftr0AJ5jWVrLBEk47yhdouee6BBuzy2EL-bdJEMx9IuWVgTwFO3pjJWWyE5KTgYnBQS8UdJ3unZJQPYPK-rBn7eZ-6531dRoYD6CHlRjWZpV-Gdlq3VajF-j1AyCnn7Mvk9mGYv04QvRpLoYJoUQdsGoX6NV_0k2ac6xWGdaKTinOiKiqZq-yOZWS_fD4GUrM380wB5vB_wCCYKsC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546883204</pqid></control><display><type>article</type><title>Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Cobley, James N.</creator><creatorcontrib>Cobley, James N.</creatorcontrib><description>The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria—a major presumptive oxidative stressor—produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.</description><identifier>ISSN: 2076-3921</identifier><identifier>EISSN: 2076-3921</identifier><identifier>DOI: 10.3390/antiox9100933</identifier><identifier>PMID: 33003362</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antioxidants ; assisted reproduction technology ; Biochemistry ; Birth rate ; development ; Electron transfer ; Electron transport chain ; Embryogenesis ; Embryos ; Enzymes ; Free radicals ; In vitro fertilization ; Metabolism ; Mitochondria ; oocyte ; Oocytes ; Oxidative stress ; Reactive oxygen species ; Review ; Zygotes</subject><ispartof>Antioxidants, 2020-09, Vol.9 (10), p.933</ispartof><rights>2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the author. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613</citedby><cites>FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2546883204/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2546883204?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Cobley, James N.</creatorcontrib><title>Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing</title><title>Antioxidants</title><description>The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria—a major presumptive oxidative stressor—produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.</description><subject>Antioxidants</subject><subject>assisted reproduction technology</subject><subject>Biochemistry</subject><subject>Birth rate</subject><subject>development</subject><subject>Electron transfer</subject><subject>Electron transport chain</subject><subject>Embryogenesis</subject><subject>Embryos</subject><subject>Enzymes</subject><subject>Free radicals</subject><subject>In vitro fertilization</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>oocyte</subject><subject>Oocytes</subject><subject>Oxidative stress</subject><subject>Reactive oxygen species</subject><subject>Review</subject><subject>Zygotes</subject><issn>2076-3921</issn><issn>2076-3921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhi0EolXokbslLhxY8NeubQ5IVcVHRKui0p6tWdubOGzsYO_S8u8xTVURfPF45tUznleD0EtK3nKuyTuIU0h3mhKiOX-CjhmRXcM1o0__iY_QSSkbUo-mXBH9HB1xTgjnHTtG6cLbNcRQtgWnAV-EKdl1ii4HGPHV5Xf8LSc329om4hDxaSmhTN7hK797LLzH12uPv8Z0G9_gqYY38cf-AdHdJ5ZxymE1h7h6gZ4NMBZ_8nAv0M2nj9dnX5rzy8_Ls9PzxnKlpsYROTDNeto6BR4GyigRUrOBCAGCSuIBRGvZQFXftr0AJ5jWVrLBEk47yhdouee6BBuzy2EL-bdJEMx9IuWVgTwFO3pjJWWyE5KTgYnBQS8UdJ3unZJQPYPK-rBn7eZ-6531dRoYD6CHlRjWZpV-Gdlq3VajF-j1AyCnn7Mvk9mGYv04QvRpLoYJoUQdsGoX6NV_0k2ac6xWGdaKTinOiKiqZq-yOZWS_fD4GUrM380wB5vB_wCCYKsC</recordid><startdate>20200929</startdate><enddate>20200929</enddate><creator>Cobley, James N.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200929</creationdate><title>Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing</title><author>Cobley, James N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antioxidants</topic><topic>assisted reproduction technology</topic><topic>Biochemistry</topic><topic>Birth rate</topic><topic>development</topic><topic>Electron transfer</topic><topic>Electron transport chain</topic><topic>Embryogenesis</topic><topic>Embryos</topic><topic>Enzymes</topic><topic>Free radicals</topic><topic>In vitro fertilization</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>oocyte</topic><topic>Oocytes</topic><topic>Oxidative stress</topic><topic>Reactive oxygen species</topic><topic>Review</topic><topic>Zygotes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobley, James N.</creatorcontrib><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Antioxidants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobley, James N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing</atitle><jtitle>Antioxidants</jtitle><date>2020-09-29</date><risdate>2020</risdate><volume>9</volume><issue>10</issue><spage>933</spage><pages>933-</pages><issn>2076-3921</issn><eissn>2076-3921</eissn><abstract>The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria—a major presumptive oxidative stressor—produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33003362</pmid><doi>10.3390/antiox9100933</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3921 |
ispartof | Antioxidants, 2020-09, Vol.9 (10), p.933 |
issn | 2076-3921 2076-3921 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c712764730f24fdab48a669bd87a009a |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Antioxidants assisted reproduction technology Biochemistry Birth rate development Electron transfer Electron transport chain Embryogenesis Embryos Enzymes Free radicals In vitro fertilization Metabolism Mitochondria oocyte Oocytes Oxidative stress Reactive oxygen species Review Zygotes |
title | Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20Mitochondrial%20ROS%20Production%20in%20Assisted%20Reproduction:%20The%20Known,%20the%20Unknown,%20and%20the%20Intriguing&rft.jtitle=Antioxidants&rft.au=Cobley,%20James%20N.&rft.date=2020-09-29&rft.volume=9&rft.issue=10&rft.spage=933&rft.pages=933-&rft.issn=2076-3921&rft.eissn=2076-3921&rft_id=info:doi/10.3390/antiox9100933&rft_dat=%3Cproquest_doaj_%3E2546883204%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2546883204&rft_id=info:pmid/33003362&rfr_iscdi=true |