Loading…

Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing

The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria—a major presumptive oxidative stressor—produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zyg...

Full description

Saved in:
Bibliographic Details
Published in:Antioxidants 2020-09, Vol.9 (10), p.933
Main Author: Cobley, James N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613
cites cdi_FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613
container_end_page
container_issue 10
container_start_page 933
container_title Antioxidants
container_volume 9
creator Cobley, James N.
description The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria—a major presumptive oxidative stressor—produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.
doi_str_mv 10.3390/antiox9100933
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c712764730f24fdab48a669bd87a009a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c712764730f24fdab48a669bd87a009a</doaj_id><sourcerecordid>2546883204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhi0EolXokbslLhxY8NeubQ5IVcVHRKui0p6tWdubOGzsYO_S8u8xTVURfPF45tUznleD0EtK3nKuyTuIU0h3mhKiOX-CjhmRXcM1o0__iY_QSSkbUo-mXBH9HB1xTgjnHTtG6cLbNcRQtgWnAV-EKdl1ii4HGPHV5Xf8LSc329om4hDxaSmhTN7hK797LLzH12uPv8Z0G9_gqYY38cf-AdHdJ5ZxymE1h7h6gZ4NMBZ_8nAv0M2nj9dnX5rzy8_Ls9PzxnKlpsYROTDNeto6BR4GyigRUrOBCAGCSuIBRGvZQFXftr0AJ5jWVrLBEk47yhdouee6BBuzy2EL-bdJEMx9IuWVgTwFO3pjJWWyE5KTgYnBQS8UdJ3unZJQPYPK-rBn7eZ-6531dRoYD6CHlRjWZpV-Gdlq3VajF-j1AyCnn7Mvk9mGYv04QvRpLoYJoUQdsGoX6NV_0k2ac6xWGdaKTinOiKiqZq-yOZWS_fD4GUrM380wB5vB_wCCYKsC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546883204</pqid></control><display><type>article</type><title>Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Cobley, James N.</creator><creatorcontrib>Cobley, James N.</creatorcontrib><description>The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria—a major presumptive oxidative stressor—produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.</description><identifier>ISSN: 2076-3921</identifier><identifier>EISSN: 2076-3921</identifier><identifier>DOI: 10.3390/antiox9100933</identifier><identifier>PMID: 33003362</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antioxidants ; assisted reproduction technology ; Biochemistry ; Birth rate ; development ; Electron transfer ; Electron transport chain ; Embryogenesis ; Embryos ; Enzymes ; Free radicals ; In vitro fertilization ; Metabolism ; Mitochondria ; oocyte ; Oocytes ; Oxidative stress ; Reactive oxygen species ; Review ; Zygotes</subject><ispartof>Antioxidants, 2020-09, Vol.9 (10), p.933</ispartof><rights>2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the author. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613</citedby><cites>FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2546883204/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2546883204?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Cobley, James N.</creatorcontrib><title>Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing</title><title>Antioxidants</title><description>The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria—a major presumptive oxidative stressor—produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.</description><subject>Antioxidants</subject><subject>assisted reproduction technology</subject><subject>Biochemistry</subject><subject>Birth rate</subject><subject>development</subject><subject>Electron transfer</subject><subject>Electron transport chain</subject><subject>Embryogenesis</subject><subject>Embryos</subject><subject>Enzymes</subject><subject>Free radicals</subject><subject>In vitro fertilization</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>oocyte</subject><subject>Oocytes</subject><subject>Oxidative stress</subject><subject>Reactive oxygen species</subject><subject>Review</subject><subject>Zygotes</subject><issn>2076-3921</issn><issn>2076-3921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhi0EolXokbslLhxY8NeubQ5IVcVHRKui0p6tWdubOGzsYO_S8u8xTVURfPF45tUznleD0EtK3nKuyTuIU0h3mhKiOX-CjhmRXcM1o0__iY_QSSkbUo-mXBH9HB1xTgjnHTtG6cLbNcRQtgWnAV-EKdl1ii4HGPHV5Xf8LSc329om4hDxaSmhTN7hK797LLzH12uPv8Z0G9_gqYY38cf-AdHdJ5ZxymE1h7h6gZ4NMBZ_8nAv0M2nj9dnX5rzy8_Ls9PzxnKlpsYROTDNeto6BR4GyigRUrOBCAGCSuIBRGvZQFXftr0AJ5jWVrLBEk47yhdouee6BBuzy2EL-bdJEMx9IuWVgTwFO3pjJWWyE5KTgYnBQS8UdJ3unZJQPYPK-rBn7eZ-6531dRoYD6CHlRjWZpV-Gdlq3VajF-j1AyCnn7Mvk9mGYv04QvRpLoYJoUQdsGoX6NV_0k2ac6xWGdaKTinOiKiqZq-yOZWS_fD4GUrM380wB5vB_wCCYKsC</recordid><startdate>20200929</startdate><enddate>20200929</enddate><creator>Cobley, James N.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200929</creationdate><title>Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing</title><author>Cobley, James N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antioxidants</topic><topic>assisted reproduction technology</topic><topic>Biochemistry</topic><topic>Birth rate</topic><topic>development</topic><topic>Electron transfer</topic><topic>Electron transport chain</topic><topic>Embryogenesis</topic><topic>Embryos</topic><topic>Enzymes</topic><topic>Free radicals</topic><topic>In vitro fertilization</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>oocyte</topic><topic>Oocytes</topic><topic>Oxidative stress</topic><topic>Reactive oxygen species</topic><topic>Review</topic><topic>Zygotes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobley, James N.</creatorcontrib><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Antioxidants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobley, James N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing</atitle><jtitle>Antioxidants</jtitle><date>2020-09-29</date><risdate>2020</risdate><volume>9</volume><issue>10</issue><spage>933</spage><pages>933-</pages><issn>2076-3921</issn><eissn>2076-3921</eissn><abstract>The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria—a major presumptive oxidative stressor—produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33003362</pmid><doi>10.3390/antiox9100933</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3921
ispartof Antioxidants, 2020-09, Vol.9 (10), p.933
issn 2076-3921
2076-3921
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c712764730f24fdab48a669bd87a009a
source PubMed (Medline); Publicly Available Content Database
subjects Antioxidants
assisted reproduction technology
Biochemistry
Birth rate
development
Electron transfer
Electron transport chain
Embryogenesis
Embryos
Enzymes
Free radicals
In vitro fertilization
Metabolism
Mitochondria
oocyte
Oocytes
Oxidative stress
Reactive oxygen species
Review
Zygotes
title Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20Mitochondrial%20ROS%20Production%20in%20Assisted%20Reproduction:%20The%20Known,%20the%20Unknown,%20and%20the%20Intriguing&rft.jtitle=Antioxidants&rft.au=Cobley,%20James%20N.&rft.date=2020-09-29&rft.volume=9&rft.issue=10&rft.spage=933&rft.pages=933-&rft.issn=2076-3921&rft.eissn=2076-3921&rft_id=info:doi/10.3390/antiox9100933&rft_dat=%3Cproquest_doaj_%3E2546883204%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-d07f292b15d8aeaf12104792f044a4170eaa45c2f18b55b4ad4299c72fc031613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2546883204&rft_id=info:pmid/33003362&rfr_iscdi=true