Loading…
Effect of Iron Content on the Thermal Conductivity and Thermal Diffusivity of Orthopyroxene
The thermal properties of major minerals play a key role in understanding the internal dynamic mechanism and thermal evolution of the Earth and rocky planets. In this study, we first investigated the effect of Fe on the thermal conductivity (κ) and the thermal diffusivity (D) of orthopyroxene at 1–3...
Saved in:
Published in: | Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2024-06, Vol.25 (6), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2980-cb31b23d46124e43e16353cbbbadc75708d1059d824108d9022d5cf7f7e974383 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | |
container_title | Geochemistry, geophysics, geosystems : G3 |
container_volume | 25 |
creator | Guo, Xinzhuan Feng, Bo Zhang, Baohua Zhai, Shuangmeng Xue, Weihong Song, Yunke Song, Yuping Yan, Xinxin |
description | The thermal properties of major minerals play a key role in understanding the internal dynamic mechanism and thermal evolution of the Earth and rocky planets. In this study, we first investigated the effect of Fe on the thermal conductivity (κ) and the thermal diffusivity (D) of orthopyroxene at 1–3 GPa and 293–873 K by the transient plane source method. The κ and D both decrease with increasing temperature and decreasing pressure. With increasing Fe content, the two parameters both quickly decrease from the beginning and then slack off. We further modeled the thermal evolution of S‐type asteroids, which strongly depends on the composition model and the dimension of the planet. Combining the present data with surface heat flow and heat production, the lunar's geotherm until 1,400 km is constructed. The core‐mantle boundary temperature of the Moon is refined from 1,883 to 1,754 K.
Plain Language Summary
The thermal state and the thermal evolution of rocky planets are strongly influenced by the thermal properties of the major constituent minerals. Orthopyroxene is one of such minerals for rocky planets (e.g., S‐type asteroids and moon). The Fe content can potentially affect the thermal properties of orthopyroxene. However, there are no relevant studies up to now. In this study, we systematically measured the thermal conductivity and the thermal diffusivity of pyroxene with variable Fe content at high temperature and high pressure. Our research shows that the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with increasing Fe content. Adopting the results of this study, we simulate the thermal evolution of S‐type asteroids with different compositions and dimensions and construct the lunar's geotherm until the core‐mantle boundary.
Key Points
Both the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with temperature and increase with pressure
The thermal conductivity and the thermal diffusivity of orthopyroxene quickly decrease with iron content
The thermal evolutions of S‐type asteroids are first simulated and the thermal structure of the lunar interior until the CMB is constrained |
doi_str_mv | 10.1029/2023GC011419 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c728af48a44740c4a450822c81325ad0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c728af48a44740c4a450822c81325ad0</doaj_id><sourcerecordid>3072247747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2980-cb31b23d46124e43e16353cbbbadc75708d1059d824108d9022d5cf7f7e974383</originalsourceid><addsrcrecordid>eNp9kT9PwzAQxSMEEqWw8QEisRKwz3btjCiUUKlSlzIxWI7_0FRpXJwEyLcnJQh1Yrp37356d9JF0TVGdxhBeg8ISJ4hjClOT6IJZsCSweOnR_o8umiaLUKYMiYm0evcOavb2Lt4EXwdZ75ubT30ddxubLze2LBT1cE2nW7Lj7LtY1Wbv8Fj6VzXjP6QsQrtxu_74L9sbS-jM6eqxl791mn08jRfZ8_JcpUvsodloiEVKNEFwQUQQ2cYqKXE4hlhRBdFoYzmjCNhMGKpEUDxoFMEYJh23HGbckoEmUaLMdd4tZX7UO5U6KVXpfwxfHiTKrSlrqzUHIRyVChKOUWaKsqQANACE2DKoCHrZszaB__e2aaVW9-FejhfEsQBKOeUD9TtSOngmyZY97cVI3l4hTx-xYCTEf8sK9v_y8o8z-dAiEDkG3RPiAE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072247747</pqid></control><display><type>article</type><title>Effect of Iron Content on the Thermal Conductivity and Thermal Diffusivity of Orthopyroxene</title><source>Wiley Open Access</source><creator>Guo, Xinzhuan ; Feng, Bo ; Zhang, Baohua ; Zhai, Shuangmeng ; Xue, Weihong ; Song, Yunke ; Song, Yuping ; Yan, Xinxin</creator><creatorcontrib>Guo, Xinzhuan ; Feng, Bo ; Zhang, Baohua ; Zhai, Shuangmeng ; Xue, Weihong ; Song, Yunke ; Song, Yuping ; Yan, Xinxin</creatorcontrib><description>The thermal properties of major minerals play a key role in understanding the internal dynamic mechanism and thermal evolution of the Earth and rocky planets. In this study, we first investigated the effect of Fe on the thermal conductivity (κ) and the thermal diffusivity (D) of orthopyroxene at 1–3 GPa and 293–873 K by the transient plane source method. The κ and D both decrease with increasing temperature and decreasing pressure. With increasing Fe content, the two parameters both quickly decrease from the beginning and then slack off. We further modeled the thermal evolution of S‐type asteroids, which strongly depends on the composition model and the dimension of the planet. Combining the present data with surface heat flow and heat production, the lunar's geotherm until 1,400 km is constructed. The core‐mantle boundary temperature of the Moon is refined from 1,883 to 1,754 K.
Plain Language Summary
The thermal state and the thermal evolution of rocky planets are strongly influenced by the thermal properties of the major constituent minerals. Orthopyroxene is one of such minerals for rocky planets (e.g., S‐type asteroids and moon). The Fe content can potentially affect the thermal properties of orthopyroxene. However, there are no relevant studies up to now. In this study, we systematically measured the thermal conductivity and the thermal diffusivity of pyroxene with variable Fe content at high temperature and high pressure. Our research shows that the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with increasing Fe content. Adopting the results of this study, we simulate the thermal evolution of S‐type asteroids with different compositions and dimensions and construct the lunar's geotherm until the core‐mantle boundary.
Key Points
Both the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with temperature and increase with pressure
The thermal conductivity and the thermal diffusivity of orthopyroxene quickly decrease with iron content
The thermal evolutions of S‐type asteroids are first simulated and the thermal structure of the lunar interior until the CMB is constrained</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2023GC011419</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Asteroids ; Diffusion coefficients ; Evolution ; Heat conductivity ; Heat flow ; High pressure ; High temperature ; Iron ; Iron content ; Minerals ; Moon ; orthopyroxene ; Planets ; S‐type asteroid ; Terrestrial planets ; Thermal conductivity ; Thermal diffusivity ; thermal evolution ; Thermal properties</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2024-06, Vol.25 (6), p.n/a</ispartof><rights>2024 The Author(s). Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2980-cb31b23d46124e43e16353cbbbadc75708d1059d824108d9022d5cf7f7e974383</cites><orcidid>0000-0002-0916-5085 ; 0000-0002-1239-1569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023GC011419$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023GC011419$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Guo, Xinzhuan</creatorcontrib><creatorcontrib>Feng, Bo</creatorcontrib><creatorcontrib>Zhang, Baohua</creatorcontrib><creatorcontrib>Zhai, Shuangmeng</creatorcontrib><creatorcontrib>Xue, Weihong</creatorcontrib><creatorcontrib>Song, Yunke</creatorcontrib><creatorcontrib>Song, Yuping</creatorcontrib><creatorcontrib>Yan, Xinxin</creatorcontrib><title>Effect of Iron Content on the Thermal Conductivity and Thermal Diffusivity of Orthopyroxene</title><title>Geochemistry, geophysics, geosystems : G3</title><description>The thermal properties of major minerals play a key role in understanding the internal dynamic mechanism and thermal evolution of the Earth and rocky planets. In this study, we first investigated the effect of Fe on the thermal conductivity (κ) and the thermal diffusivity (D) of orthopyroxene at 1–3 GPa and 293–873 K by the transient plane source method. The κ and D both decrease with increasing temperature and decreasing pressure. With increasing Fe content, the two parameters both quickly decrease from the beginning and then slack off. We further modeled the thermal evolution of S‐type asteroids, which strongly depends on the composition model and the dimension of the planet. Combining the present data with surface heat flow and heat production, the lunar's geotherm until 1,400 km is constructed. The core‐mantle boundary temperature of the Moon is refined from 1,883 to 1,754 K.
Plain Language Summary
The thermal state and the thermal evolution of rocky planets are strongly influenced by the thermal properties of the major constituent minerals. Orthopyroxene is one of such minerals for rocky planets (e.g., S‐type asteroids and moon). The Fe content can potentially affect the thermal properties of orthopyroxene. However, there are no relevant studies up to now. In this study, we systematically measured the thermal conductivity and the thermal diffusivity of pyroxene with variable Fe content at high temperature and high pressure. Our research shows that the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with increasing Fe content. Adopting the results of this study, we simulate the thermal evolution of S‐type asteroids with different compositions and dimensions and construct the lunar's geotherm until the core‐mantle boundary.
Key Points
Both the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with temperature and increase with pressure
The thermal conductivity and the thermal diffusivity of orthopyroxene quickly decrease with iron content
The thermal evolutions of S‐type asteroids are first simulated and the thermal structure of the lunar interior until the CMB is constrained</description><subject>Asteroids</subject><subject>Diffusion coefficients</subject><subject>Evolution</subject><subject>Heat conductivity</subject><subject>Heat flow</subject><subject>High pressure</subject><subject>High temperature</subject><subject>Iron</subject><subject>Iron content</subject><subject>Minerals</subject><subject>Moon</subject><subject>orthopyroxene</subject><subject>Planets</subject><subject>S‐type asteroid</subject><subject>Terrestrial planets</subject><subject>Thermal conductivity</subject><subject>Thermal diffusivity</subject><subject>thermal evolution</subject><subject>Thermal properties</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kT9PwzAQxSMEEqWw8QEisRKwz3btjCiUUKlSlzIxWI7_0FRpXJwEyLcnJQh1Yrp37356d9JF0TVGdxhBeg8ISJ4hjClOT6IJZsCSweOnR_o8umiaLUKYMiYm0evcOavb2Lt4EXwdZ75ubT30ddxubLze2LBT1cE2nW7Lj7LtY1Wbv8Fj6VzXjP6QsQrtxu_74L9sbS-jM6eqxl791mn08jRfZ8_JcpUvsodloiEVKNEFwQUQQ2cYqKXE4hlhRBdFoYzmjCNhMGKpEUDxoFMEYJh23HGbckoEmUaLMdd4tZX7UO5U6KVXpfwxfHiTKrSlrqzUHIRyVChKOUWaKsqQANACE2DKoCHrZszaB__e2aaVW9-FejhfEsQBKOeUD9TtSOngmyZY97cVI3l4hTx-xYCTEf8sK9v_y8o8z-dAiEDkG3RPiAE</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Guo, Xinzhuan</creator><creator>Feng, Bo</creator><creator>Zhang, Baohua</creator><creator>Zhai, Shuangmeng</creator><creator>Xue, Weihong</creator><creator>Song, Yunke</creator><creator>Song, Yuping</creator><creator>Yan, Xinxin</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0916-5085</orcidid><orcidid>https://orcid.org/0000-0002-1239-1569</orcidid></search><sort><creationdate>202406</creationdate><title>Effect of Iron Content on the Thermal Conductivity and Thermal Diffusivity of Orthopyroxene</title><author>Guo, Xinzhuan ; Feng, Bo ; Zhang, Baohua ; Zhai, Shuangmeng ; Xue, Weihong ; Song, Yunke ; Song, Yuping ; Yan, Xinxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2980-cb31b23d46124e43e16353cbbbadc75708d1059d824108d9022d5cf7f7e974383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asteroids</topic><topic>Diffusion coefficients</topic><topic>Evolution</topic><topic>Heat conductivity</topic><topic>Heat flow</topic><topic>High pressure</topic><topic>High temperature</topic><topic>Iron</topic><topic>Iron content</topic><topic>Minerals</topic><topic>Moon</topic><topic>orthopyroxene</topic><topic>Planets</topic><topic>S‐type asteroid</topic><topic>Terrestrial planets</topic><topic>Thermal conductivity</topic><topic>Thermal diffusivity</topic><topic>thermal evolution</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xinzhuan</creatorcontrib><creatorcontrib>Feng, Bo</creatorcontrib><creatorcontrib>Zhang, Baohua</creatorcontrib><creatorcontrib>Zhai, Shuangmeng</creatorcontrib><creatorcontrib>Xue, Weihong</creatorcontrib><creatorcontrib>Song, Yunke</creatorcontrib><creatorcontrib>Song, Yuping</creatorcontrib><creatorcontrib>Yan, Xinxin</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xinzhuan</au><au>Feng, Bo</au><au>Zhang, Baohua</au><au>Zhai, Shuangmeng</au><au>Xue, Weihong</au><au>Song, Yunke</au><au>Song, Yuping</au><au>Yan, Xinxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Iron Content on the Thermal Conductivity and Thermal Diffusivity of Orthopyroxene</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><date>2024-06</date><risdate>2024</risdate><volume>25</volume><issue>6</issue><epage>n/a</epage><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>The thermal properties of major minerals play a key role in understanding the internal dynamic mechanism and thermal evolution of the Earth and rocky planets. In this study, we first investigated the effect of Fe on the thermal conductivity (κ) and the thermal diffusivity (D) of orthopyroxene at 1–3 GPa and 293–873 K by the transient plane source method. The κ and D both decrease with increasing temperature and decreasing pressure. With increasing Fe content, the two parameters both quickly decrease from the beginning and then slack off. We further modeled the thermal evolution of S‐type asteroids, which strongly depends on the composition model and the dimension of the planet. Combining the present data with surface heat flow and heat production, the lunar's geotherm until 1,400 km is constructed. The core‐mantle boundary temperature of the Moon is refined from 1,883 to 1,754 K.
Plain Language Summary
The thermal state and the thermal evolution of rocky planets are strongly influenced by the thermal properties of the major constituent minerals. Orthopyroxene is one of such minerals for rocky planets (e.g., S‐type asteroids and moon). The Fe content can potentially affect the thermal properties of orthopyroxene. However, there are no relevant studies up to now. In this study, we systematically measured the thermal conductivity and the thermal diffusivity of pyroxene with variable Fe content at high temperature and high pressure. Our research shows that the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with increasing Fe content. Adopting the results of this study, we simulate the thermal evolution of S‐type asteroids with different compositions and dimensions and construct the lunar's geotherm until the core‐mantle boundary.
Key Points
Both the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with temperature and increase with pressure
The thermal conductivity and the thermal diffusivity of orthopyroxene quickly decrease with iron content
The thermal evolutions of S‐type asteroids are first simulated and the thermal structure of the lunar interior until the CMB is constrained</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2023GC011419</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0916-5085</orcidid><orcidid>https://orcid.org/0000-0002-1239-1569</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-2027 |
ispartof | Geochemistry, geophysics, geosystems : G3, 2024-06, Vol.25 (6), p.n/a |
issn | 1525-2027 1525-2027 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c728af48a44740c4a450822c81325ad0 |
source | Wiley Open Access |
subjects | Asteroids Diffusion coefficients Evolution Heat conductivity Heat flow High pressure High temperature Iron Iron content Minerals Moon orthopyroxene Planets S‐type asteroid Terrestrial planets Thermal conductivity Thermal diffusivity thermal evolution Thermal properties |
title | Effect of Iron Content on the Thermal Conductivity and Thermal Diffusivity of Orthopyroxene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Iron%20Content%20on%20the%20Thermal%20Conductivity%20and%20Thermal%20Diffusivity%20of%20Orthopyroxene&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Guo,%20Xinzhuan&rft.date=2024-06&rft.volume=25&rft.issue=6&rft.epage=n/a&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2023GC011419&rft_dat=%3Cproquest_doaj_%3E3072247747%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2980-cb31b23d46124e43e16353cbbbadc75708d1059d824108d9022d5cf7f7e974383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072247747&rft_id=info:pmid/&rfr_iscdi=true |