Loading…

Effect of Iron Content on the Thermal Conductivity and Thermal Diffusivity of Orthopyroxene

The thermal properties of major minerals play a key role in understanding the internal dynamic mechanism and thermal evolution of the Earth and rocky planets. In this study, we first investigated the effect of Fe on the thermal conductivity (κ) and the thermal diffusivity (D) of orthopyroxene at 1–3...

Full description

Saved in:
Bibliographic Details
Published in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2024-06, Vol.25 (6), p.n/a
Main Authors: Guo, Xinzhuan, Feng, Bo, Zhang, Baohua, Zhai, Shuangmeng, Xue, Weihong, Song, Yunke, Song, Yuping, Yan, Xinxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2980-cb31b23d46124e43e16353cbbbadc75708d1059d824108d9022d5cf7f7e974383
container_end_page n/a
container_issue 6
container_start_page
container_title Geochemistry, geophysics, geosystems : G3
container_volume 25
creator Guo, Xinzhuan
Feng, Bo
Zhang, Baohua
Zhai, Shuangmeng
Xue, Weihong
Song, Yunke
Song, Yuping
Yan, Xinxin
description The thermal properties of major minerals play a key role in understanding the internal dynamic mechanism and thermal evolution of the Earth and rocky planets. In this study, we first investigated the effect of Fe on the thermal conductivity (κ) and the thermal diffusivity (D) of orthopyroxene at 1–3 GPa and 293–873 K by the transient plane source method. The κ and D both decrease with increasing temperature and decreasing pressure. With increasing Fe content, the two parameters both quickly decrease from the beginning and then slack off. We further modeled the thermal evolution of S‐type asteroids, which strongly depends on the composition model and the dimension of the planet. Combining the present data with surface heat flow and heat production, the lunar's geotherm until 1,400 km is constructed. The core‐mantle boundary temperature of the Moon is refined from 1,883 to 1,754 K. Plain Language Summary The thermal state and the thermal evolution of rocky planets are strongly influenced by the thermal properties of the major constituent minerals. Orthopyroxene is one of such minerals for rocky planets (e.g., S‐type asteroids and moon). The Fe content can potentially affect the thermal properties of orthopyroxene. However, there are no relevant studies up to now. In this study, we systematically measured the thermal conductivity and the thermal diffusivity of pyroxene with variable Fe content at high temperature and high pressure. Our research shows that the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with increasing Fe content. Adopting the results of this study, we simulate the thermal evolution of S‐type asteroids with different compositions and dimensions and construct the lunar's geotherm until the core‐mantle boundary. Key Points Both the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with temperature and increase with pressure The thermal conductivity and the thermal diffusivity of orthopyroxene quickly decrease with iron content The thermal evolutions of S‐type asteroids are first simulated and the thermal structure of the lunar interior until the CMB is constrained
doi_str_mv 10.1029/2023GC011419
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c728af48a44740c4a450822c81325ad0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c728af48a44740c4a450822c81325ad0</doaj_id><sourcerecordid>3072247747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2980-cb31b23d46124e43e16353cbbbadc75708d1059d824108d9022d5cf7f7e974383</originalsourceid><addsrcrecordid>eNp9kT9PwzAQxSMEEqWw8QEisRKwz3btjCiUUKlSlzIxWI7_0FRpXJwEyLcnJQh1Yrp37356d9JF0TVGdxhBeg8ISJ4hjClOT6IJZsCSweOnR_o8umiaLUKYMiYm0evcOavb2Lt4EXwdZ75ubT30ddxubLze2LBT1cE2nW7Lj7LtY1Wbv8Fj6VzXjP6QsQrtxu_74L9sbS-jM6eqxl791mn08jRfZ8_JcpUvsodloiEVKNEFwQUQQ2cYqKXE4hlhRBdFoYzmjCNhMGKpEUDxoFMEYJh23HGbckoEmUaLMdd4tZX7UO5U6KVXpfwxfHiTKrSlrqzUHIRyVChKOUWaKsqQANACE2DKoCHrZszaB__e2aaVW9-FejhfEsQBKOeUD9TtSOngmyZY97cVI3l4hTx-xYCTEf8sK9v_y8o8z-dAiEDkG3RPiAE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072247747</pqid></control><display><type>article</type><title>Effect of Iron Content on the Thermal Conductivity and Thermal Diffusivity of Orthopyroxene</title><source>Wiley Open Access</source><creator>Guo, Xinzhuan ; Feng, Bo ; Zhang, Baohua ; Zhai, Shuangmeng ; Xue, Weihong ; Song, Yunke ; Song, Yuping ; Yan, Xinxin</creator><creatorcontrib>Guo, Xinzhuan ; Feng, Bo ; Zhang, Baohua ; Zhai, Shuangmeng ; Xue, Weihong ; Song, Yunke ; Song, Yuping ; Yan, Xinxin</creatorcontrib><description>The thermal properties of major minerals play a key role in understanding the internal dynamic mechanism and thermal evolution of the Earth and rocky planets. In this study, we first investigated the effect of Fe on the thermal conductivity (κ) and the thermal diffusivity (D) of orthopyroxene at 1–3 GPa and 293–873 K by the transient plane source method. The κ and D both decrease with increasing temperature and decreasing pressure. With increasing Fe content, the two parameters both quickly decrease from the beginning and then slack off. We further modeled the thermal evolution of S‐type asteroids, which strongly depends on the composition model and the dimension of the planet. Combining the present data with surface heat flow and heat production, the lunar's geotherm until 1,400 km is constructed. The core‐mantle boundary temperature of the Moon is refined from 1,883 to 1,754 K. Plain Language Summary The thermal state and the thermal evolution of rocky planets are strongly influenced by the thermal properties of the major constituent minerals. Orthopyroxene is one of such minerals for rocky planets (e.g., S‐type asteroids and moon). The Fe content can potentially affect the thermal properties of orthopyroxene. However, there are no relevant studies up to now. In this study, we systematically measured the thermal conductivity and the thermal diffusivity of pyroxene with variable Fe content at high temperature and high pressure. Our research shows that the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with increasing Fe content. Adopting the results of this study, we simulate the thermal evolution of S‐type asteroids with different compositions and dimensions and construct the lunar's geotherm until the core‐mantle boundary. Key Points Both the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with temperature and increase with pressure The thermal conductivity and the thermal diffusivity of orthopyroxene quickly decrease with iron content The thermal evolutions of S‐type asteroids are first simulated and the thermal structure of the lunar interior until the CMB is constrained</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2023GC011419</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Asteroids ; Diffusion coefficients ; Evolution ; Heat conductivity ; Heat flow ; High pressure ; High temperature ; Iron ; Iron content ; Minerals ; Moon ; orthopyroxene ; Planets ; S‐type asteroid ; Terrestrial planets ; Thermal conductivity ; Thermal diffusivity ; thermal evolution ; Thermal properties</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2024-06, Vol.25 (6), p.n/a</ispartof><rights>2024 The Author(s). Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2980-cb31b23d46124e43e16353cbbbadc75708d1059d824108d9022d5cf7f7e974383</cites><orcidid>0000-0002-0916-5085 ; 0000-0002-1239-1569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023GC011419$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023GC011419$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Guo, Xinzhuan</creatorcontrib><creatorcontrib>Feng, Bo</creatorcontrib><creatorcontrib>Zhang, Baohua</creatorcontrib><creatorcontrib>Zhai, Shuangmeng</creatorcontrib><creatorcontrib>Xue, Weihong</creatorcontrib><creatorcontrib>Song, Yunke</creatorcontrib><creatorcontrib>Song, Yuping</creatorcontrib><creatorcontrib>Yan, Xinxin</creatorcontrib><title>Effect of Iron Content on the Thermal Conductivity and Thermal Diffusivity of Orthopyroxene</title><title>Geochemistry, geophysics, geosystems : G3</title><description>The thermal properties of major minerals play a key role in understanding the internal dynamic mechanism and thermal evolution of the Earth and rocky planets. In this study, we first investigated the effect of Fe on the thermal conductivity (κ) and the thermal diffusivity (D) of orthopyroxene at 1–3 GPa and 293–873 K by the transient plane source method. The κ and D both decrease with increasing temperature and decreasing pressure. With increasing Fe content, the two parameters both quickly decrease from the beginning and then slack off. We further modeled the thermal evolution of S‐type asteroids, which strongly depends on the composition model and the dimension of the planet. Combining the present data with surface heat flow and heat production, the lunar's geotherm until 1,400 km is constructed. The core‐mantle boundary temperature of the Moon is refined from 1,883 to 1,754 K. Plain Language Summary The thermal state and the thermal evolution of rocky planets are strongly influenced by the thermal properties of the major constituent minerals. Orthopyroxene is one of such minerals for rocky planets (e.g., S‐type asteroids and moon). The Fe content can potentially affect the thermal properties of orthopyroxene. However, there are no relevant studies up to now. In this study, we systematically measured the thermal conductivity and the thermal diffusivity of pyroxene with variable Fe content at high temperature and high pressure. Our research shows that the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with increasing Fe content. Adopting the results of this study, we simulate the thermal evolution of S‐type asteroids with different compositions and dimensions and construct the lunar's geotherm until the core‐mantle boundary. Key Points Both the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with temperature and increase with pressure The thermal conductivity and the thermal diffusivity of orthopyroxene quickly decrease with iron content The thermal evolutions of S‐type asteroids are first simulated and the thermal structure of the lunar interior until the CMB is constrained</description><subject>Asteroids</subject><subject>Diffusion coefficients</subject><subject>Evolution</subject><subject>Heat conductivity</subject><subject>Heat flow</subject><subject>High pressure</subject><subject>High temperature</subject><subject>Iron</subject><subject>Iron content</subject><subject>Minerals</subject><subject>Moon</subject><subject>orthopyroxene</subject><subject>Planets</subject><subject>S‐type asteroid</subject><subject>Terrestrial planets</subject><subject>Thermal conductivity</subject><subject>Thermal diffusivity</subject><subject>thermal evolution</subject><subject>Thermal properties</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kT9PwzAQxSMEEqWw8QEisRKwz3btjCiUUKlSlzIxWI7_0FRpXJwEyLcnJQh1Yrp37356d9JF0TVGdxhBeg8ISJ4hjClOT6IJZsCSweOnR_o8umiaLUKYMiYm0evcOavb2Lt4EXwdZ75ubT30ddxubLze2LBT1cE2nW7Lj7LtY1Wbv8Fj6VzXjP6QsQrtxu_74L9sbS-jM6eqxl791mn08jRfZ8_JcpUvsodloiEVKNEFwQUQQ2cYqKXE4hlhRBdFoYzmjCNhMGKpEUDxoFMEYJh23HGbckoEmUaLMdd4tZX7UO5U6KVXpfwxfHiTKrSlrqzUHIRyVChKOUWaKsqQANACE2DKoCHrZszaB__e2aaVW9-FejhfEsQBKOeUD9TtSOngmyZY97cVI3l4hTx-xYCTEf8sK9v_y8o8z-dAiEDkG3RPiAE</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Guo, Xinzhuan</creator><creator>Feng, Bo</creator><creator>Zhang, Baohua</creator><creator>Zhai, Shuangmeng</creator><creator>Xue, Weihong</creator><creator>Song, Yunke</creator><creator>Song, Yuping</creator><creator>Yan, Xinxin</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0916-5085</orcidid><orcidid>https://orcid.org/0000-0002-1239-1569</orcidid></search><sort><creationdate>202406</creationdate><title>Effect of Iron Content on the Thermal Conductivity and Thermal Diffusivity of Orthopyroxene</title><author>Guo, Xinzhuan ; Feng, Bo ; Zhang, Baohua ; Zhai, Shuangmeng ; Xue, Weihong ; Song, Yunke ; Song, Yuping ; Yan, Xinxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2980-cb31b23d46124e43e16353cbbbadc75708d1059d824108d9022d5cf7f7e974383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asteroids</topic><topic>Diffusion coefficients</topic><topic>Evolution</topic><topic>Heat conductivity</topic><topic>Heat flow</topic><topic>High pressure</topic><topic>High temperature</topic><topic>Iron</topic><topic>Iron content</topic><topic>Minerals</topic><topic>Moon</topic><topic>orthopyroxene</topic><topic>Planets</topic><topic>S‐type asteroid</topic><topic>Terrestrial planets</topic><topic>Thermal conductivity</topic><topic>Thermal diffusivity</topic><topic>thermal evolution</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xinzhuan</creatorcontrib><creatorcontrib>Feng, Bo</creatorcontrib><creatorcontrib>Zhang, Baohua</creatorcontrib><creatorcontrib>Zhai, Shuangmeng</creatorcontrib><creatorcontrib>Xue, Weihong</creatorcontrib><creatorcontrib>Song, Yunke</creatorcontrib><creatorcontrib>Song, Yuping</creatorcontrib><creatorcontrib>Yan, Xinxin</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xinzhuan</au><au>Feng, Bo</au><au>Zhang, Baohua</au><au>Zhai, Shuangmeng</au><au>Xue, Weihong</au><au>Song, Yunke</au><au>Song, Yuping</au><au>Yan, Xinxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Iron Content on the Thermal Conductivity and Thermal Diffusivity of Orthopyroxene</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><date>2024-06</date><risdate>2024</risdate><volume>25</volume><issue>6</issue><epage>n/a</epage><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>The thermal properties of major minerals play a key role in understanding the internal dynamic mechanism and thermal evolution of the Earth and rocky planets. In this study, we first investigated the effect of Fe on the thermal conductivity (κ) and the thermal diffusivity (D) of orthopyroxene at 1–3 GPa and 293–873 K by the transient plane source method. The κ and D both decrease with increasing temperature and decreasing pressure. With increasing Fe content, the two parameters both quickly decrease from the beginning and then slack off. We further modeled the thermal evolution of S‐type asteroids, which strongly depends on the composition model and the dimension of the planet. Combining the present data with surface heat flow and heat production, the lunar's geotherm until 1,400 km is constructed. The core‐mantle boundary temperature of the Moon is refined from 1,883 to 1,754 K. Plain Language Summary The thermal state and the thermal evolution of rocky planets are strongly influenced by the thermal properties of the major constituent minerals. Orthopyroxene is one of such minerals for rocky planets (e.g., S‐type asteroids and moon). The Fe content can potentially affect the thermal properties of orthopyroxene. However, there are no relevant studies up to now. In this study, we systematically measured the thermal conductivity and the thermal diffusivity of pyroxene with variable Fe content at high temperature and high pressure. Our research shows that the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with increasing Fe content. Adopting the results of this study, we simulate the thermal evolution of S‐type asteroids with different compositions and dimensions and construct the lunar's geotherm until the core‐mantle boundary. Key Points Both the thermal conductivity and the thermal diffusivity of orthopyroxene decrease with temperature and increase with pressure The thermal conductivity and the thermal diffusivity of orthopyroxene quickly decrease with iron content The thermal evolutions of S‐type asteroids are first simulated and the thermal structure of the lunar interior until the CMB is constrained</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2023GC011419</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0916-5085</orcidid><orcidid>https://orcid.org/0000-0002-1239-1569</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2024-06, Vol.25 (6), p.n/a
issn 1525-2027
1525-2027
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c728af48a44740c4a450822c81325ad0
source Wiley Open Access
subjects Asteroids
Diffusion coefficients
Evolution
Heat conductivity
Heat flow
High pressure
High temperature
Iron
Iron content
Minerals
Moon
orthopyroxene
Planets
S‐type asteroid
Terrestrial planets
Thermal conductivity
Thermal diffusivity
thermal evolution
Thermal properties
title Effect of Iron Content on the Thermal Conductivity and Thermal Diffusivity of Orthopyroxene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Iron%20Content%20on%20the%20Thermal%20Conductivity%20and%20Thermal%20Diffusivity%20of%20Orthopyroxene&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Guo,%20Xinzhuan&rft.date=2024-06&rft.volume=25&rft.issue=6&rft.epage=n/a&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2023GC011419&rft_dat=%3Cproquest_doaj_%3E3072247747%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2980-cb31b23d46124e43e16353cbbbadc75708d1059d824108d9022d5cf7f7e974383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072247747&rft_id=info:pmid/&rfr_iscdi=true