Loading…
Orally administered recombinant Lactobacillus expressing African swine fever virus antigens that induced immunity responses
African swine fever (ASF) is a highly contagious, acute, febrile disease caused by the African swine fever virus (ASFV), with morbidity and mortality rates approaching 100% in domestic and wild swine, resulting in massive economic losses to the pig industry worldwide. This study aimed to express the...
Saved in:
Published in: | Frontiers in microbiology 2023-01, Vol.13, p.1103327-1103327 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | African swine fever (ASF) is a highly contagious, acute, febrile disease caused by the African swine fever virus (ASFV), with morbidity and mortality rates approaching 100% in domestic and wild swine, resulting in massive economic losses to the pig industry worldwide. This study aimed to express the p30, p54, and p72 proteins encoded by ASFV
using the
(
) expression system. Here, six new functional recombinant
were constructed, and the expression of the p30 protein, p54 protein, p72 protein, p30-LTB (heat-labile enterotoxin B, LTB) fusion protein, p54-LTB fusion protein, and the p72-LTB fusion protein was successfully detected by Western blot analysis. Following oral immunization of rabbits with recombinant
, serum IgG, intestinal mucosal sIgA, cytokines (IL-4 and INF-γ), and splenocyte viability were higher than in the control group
ELISA. Notably, without the LTB adjuvant group, humoral and Th1 cellular immunity were promoted, whereas, with the LTB adjuvant group, local mucosal immunity, humoral immunity, and Th2 cellular immunity were promoted, providing new insights into the design and development of an ASFV subunit vaccine. |
---|---|
ISSN: | 1664-302X 1664-302X |
DOI: | 10.3389/fmicb.2022.1103327 |