Loading…

A Cloud Infrastructure for Health Monitoring in Emergency Response Scenarios

Wearable devices have a significant impact on society, and recent advancements in modern sensor technologies are opening up new possibilities for healthcare applications. Continuous vital sign monitoring using Internet of Things solutions can be a crucial tool for emergency management, reducing risk...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-10, Vol.24 (21), p.6992
Main Authors: Orro, Alessandro, Geminiani, Gian Angelo, Sicurello, Francesco, Modica, Marcello, Pegreffi, Francesco, Neri, Luca, Augello, Antonio, Botteghi, Matteo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wearable devices have a significant impact on society, and recent advancements in modern sensor technologies are opening up new possibilities for healthcare applications. Continuous vital sign monitoring using Internet of Things solutions can be a crucial tool for emergency management, reducing risks in rescue operations and ensuring the safety of workers. The massive amounts of data, high network traffic, and computational demands of a typical monitoring application can be challenging to manage with traditional infrastructure. Cloud computing provides a solution with its built-in resilience and elasticity capabilities. This study presents a Cloud-based monitoring architecture for remote vital sign tracking of paramedics and medical workers through the use of a mobile wearable device. The system monitors vital signs such as electrocardiograms and breathing patterns during work sessions, and it is able to manage real-time alarm events to a personnel management center. In this study, 900 paramedics and emergency workers were monitored using wearable devices over a period of 12 months. Data from these devices were collected, processed via Cloud infrastructure, and analyzed to assess the system's reliability and scalability. The results showed a significant improvement in worker safety and operational efficiency. This study demonstrates the potential of Cloud-based systems and Internet of Things devices in enhancing emergency response efforts.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24216992