Loading…

Pacing Profiles in Competitive Track Races: Regulation of Exercise Intensity Is Related to Cognitive Ability

Pacing has been defined as the goal-directed regulation of exercise intensity over an exercise bout, in which athletes need to decide how and when to invest their energy. The purpose of this study was to explore if the regulation of exercise intensity during competitive track races is different betw...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in physiology 2016-12, Vol.7, p.624-624
Main Authors: Van Biesen, Debbie, Hettinga, Florentina J, McCulloch, Katina, Vanlandewijck, Yves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pacing has been defined as the goal-directed regulation of exercise intensity over an exercise bout, in which athletes need to decide how and when to invest their energy. The purpose of this study was to explore if the regulation of exercise intensity during competitive track races is different between runners with and without intellectual impairment, which is characterized by significant limitations in intellectual functioning (IQ ≤ 75) and adaptive behavioral deficits, diagnosed before the age of 18. The samples included elite runners with intellectual impairment ( = 36) and a comparison group of world class runners without impairment ( = 39), of which 47 were 400 m runners (all male) and 28 were 1500 m-runners (15 male and 13 female). Pacing was analyzed by means of 100 m split times (for 400 m races) and 200 m split times (for 1500 m races). Based on the split times, the average velocity was calculated for four segments of the races. Velocity fluctuations were defined as the differences in velocity between consecutive race segments. A mixed model ANOVA revealed significant differences in pacing profiles between runners with and without intellectual impairment ( < 0.05). Maximal velocity of elite 400 m runners with intellectual impairment in the first race segment (7.9 ± 0.3 m/s) was well below the top-velocity reached by world level 400 m runners without intellectual impairment (8.9 ± 0.2 m/s), and their overall pace was slower ( = 120.7, < 0.05). In addition, both groups followed a different pacing profile and inter-individual differences in pacing profiles were larger, with differences most pronounced for 1500 m races. Whereas, male 1500 m-runners without intellectual impairment reached a high velocity in the first 100 m (7.2 ± 0.1 m/s), slowly decelerated in the second race segment (-0.6 ± 0.1 m/s), and finished with an end sprint (+0.9 ± 0.1 m/s); the 1500 m runners with intellectual impairment started slower (6.1 ± 0.3 m/s), accelerated in the second segment (+0.2 ± 0.7 m/s), and then slowly decreased until the finish ( = 6.8, < 0.05). Our findings support the hypothesis that runners with intellectual impairment have difficulties to efficiently self-regulate their exercise intensity. Their limited cognitive resources may constrain the successful integration of appropriate pacing strategies during competitive races.
ISSN:1664-042X
1664-042X
DOI:10.3389/fphys.2016.00624