Loading…

On Some Novel Results about Split-Complex Numbers, the Diagonalization Problem, and Applications to Public Key Asymmetric Cryptography

In this paper, we present some of the foundational concepts of split-complex number theory such as split-complex divison, gcd, and congruencies. Also, we prove that Euler’s theorem is still true in the case of split-complex integers, and we use this theorem to present a split-complex version of the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematics (Hidawi) 2023, Vol.2023, p.1-12
Main Authors: Merkepci, Mehmet, Abobala, Mohammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c360t-be3055c82e7b605b01491ca28037f80aca8d936e1ed768ae6a2d955e998cfd2c3
container_end_page 12
container_issue
container_start_page 1
container_title Journal of mathematics (Hidawi)
container_volume 2023
creator Merkepci, Mehmet
Abobala, Mohammad
description In this paper, we present some of the foundational concepts of split-complex number theory such as split-complex divison, gcd, and congruencies. Also, we prove that Euler’s theorem is still true in the case of split-complex integers, and we use this theorem to present a split-complex version of the RSA algorithm which is harder to be broken than the classical version. On the other hand, we study some algebraic properties of split-complex matrices, where we present the formula of computing the exponent of a split-complex matrix eX with a novel algorithm to represent a split-complex matrix X by a split-complex diagonal matrix, which is known as the diagonalization problem. In addition, many examples were illustrated to clarify the validity of our work.
doi_str_mv 10.1155/2023/4481016
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c767bc0ed8b74250ae836197db05500f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c767bc0ed8b74250ae836197db05500f</doaj_id><sourcerecordid>2837975837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-be3055c82e7b605b01491ca28037f80aca8d936e1ed768ae6a2d955e998cfd2c3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhqMKpFalN36AJY5sqD_i2DmuFmgrqraicLb8MdnNKomD7VDSH8Dvxu0WjlzGM_Yz71jzFsVbgj8Qwvk5xZSdV5UkmNRHxQllpCorIfmrv3lNm-PiLMY9xphQyWSDT4rftyO69wOgG_8TevQV4tyniLTxc0L3U9-lcuOHqYdf6GYeDIS4QmkH6GOnt37UffeoU-dHdBe86WFYIT06tJ5yo31-iCh5dDebXKMvsKB1XIYBUsjlJixT8tugp93ypnjd6j7C2ct5Wnz__Onb5rK8vr242qyvS8tqnEoDDHNuJQVhaswNJlVDrKYSM9FKrK2WrmE1EHCilhpqTV3DOTSNtK2jlp0WVwdd5_VeTaEbdFiU1516vvBhq3RIne1BWVELYzE4aURFOdYgWU0a4Uz-AsZt1np30JqC_zFDTGrv55B3ElXermgEzzFTqwNlg48xQPtvKsHqyTj1ZJx6MS7j7w_4rhudfuj-T_8BeLmYHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837975837</pqid></control><display><type>article</type><title>On Some Novel Results about Split-Complex Numbers, the Diagonalization Problem, and Applications to Public Key Asymmetric Cryptography</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content (ProQuest)</source><creator>Merkepci, Mehmet ; Abobala, Mohammad</creator><contributor>Stanimirović, Predrag S. ; Predrag S Stanimirović</contributor><creatorcontrib>Merkepci, Mehmet ; Abobala, Mohammad ; Stanimirović, Predrag S. ; Predrag S Stanimirović</creatorcontrib><description>In this paper, we present some of the foundational concepts of split-complex number theory such as split-complex divison, gcd, and congruencies. Also, we prove that Euler’s theorem is still true in the case of split-complex integers, and we use this theorem to present a split-complex version of the RSA algorithm which is harder to be broken than the classical version. On the other hand, we study some algebraic properties of split-complex matrices, where we present the formula of computing the exponent of a split-complex matrix eX with a novel algorithm to represent a split-complex matrix X by a split-complex diagonal matrix, which is known as the diagonalization problem. In addition, many examples were illustrated to clarify the validity of our work.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2023/4481016</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Algebra ; Algorithms ; Complex numbers ; Cryptography ; Mathematics ; Multimedia ; Number theory ; Prime numbers ; Theorems</subject><ispartof>Journal of mathematics (Hidawi), 2023, Vol.2023, p.1-12</ispartof><rights>Copyright © 2023 Mehmet Merkepci and Mohammad Abobala.</rights><rights>Copyright © 2023 Mehmet Merkepci and Mohammad Abobala. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-be3055c82e7b605b01491ca28037f80aca8d936e1ed768ae6a2d955e998cfd2c3</cites><orcidid>0000-0002-1372-1769 ; 0000-0003-1536-1776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2837975837/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2837975837?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,25734,27904,27905,27906,36993,44571,74875</link.rule.ids></links><search><contributor>Stanimirović, Predrag S.</contributor><contributor>Predrag S Stanimirović</contributor><creatorcontrib>Merkepci, Mehmet</creatorcontrib><creatorcontrib>Abobala, Mohammad</creatorcontrib><title>On Some Novel Results about Split-Complex Numbers, the Diagonalization Problem, and Applications to Public Key Asymmetric Cryptography</title><title>Journal of mathematics (Hidawi)</title><description>In this paper, we present some of the foundational concepts of split-complex number theory such as split-complex divison, gcd, and congruencies. Also, we prove that Euler’s theorem is still true in the case of split-complex integers, and we use this theorem to present a split-complex version of the RSA algorithm which is harder to be broken than the classical version. On the other hand, we study some algebraic properties of split-complex matrices, where we present the formula of computing the exponent of a split-complex matrix eX with a novel algorithm to represent a split-complex matrix X by a split-complex diagonal matrix, which is known as the diagonalization problem. In addition, many examples were illustrated to clarify the validity of our work.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Complex numbers</subject><subject>Cryptography</subject><subject>Mathematics</subject><subject>Multimedia</subject><subject>Number theory</subject><subject>Prime numbers</subject><subject>Theorems</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhqMKpFalN36AJY5sqD_i2DmuFmgrqraicLb8MdnNKomD7VDSH8Dvxu0WjlzGM_Yz71jzFsVbgj8Qwvk5xZSdV5UkmNRHxQllpCorIfmrv3lNm-PiLMY9xphQyWSDT4rftyO69wOgG_8TevQV4tyniLTxc0L3U9-lcuOHqYdf6GYeDIS4QmkH6GOnt37UffeoU-dHdBe86WFYIT06tJ5yo31-iCh5dDebXKMvsKB1XIYBUsjlJixT8tugp93ypnjd6j7C2ct5Wnz__Onb5rK8vr242qyvS8tqnEoDDHNuJQVhaswNJlVDrKYSM9FKrK2WrmE1EHCilhpqTV3DOTSNtK2jlp0WVwdd5_VeTaEbdFiU1516vvBhq3RIne1BWVELYzE4aURFOdYgWU0a4Uz-AsZt1np30JqC_zFDTGrv55B3ElXermgEzzFTqwNlg48xQPtvKsHqyTj1ZJx6MS7j7w_4rhudfuj-T_8BeLmYHw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Merkepci, Mehmet</creator><creator>Abobala, Mohammad</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1372-1769</orcidid><orcidid>https://orcid.org/0000-0003-1536-1776</orcidid></search><sort><creationdate>2023</creationdate><title>On Some Novel Results about Split-Complex Numbers, the Diagonalization Problem, and Applications to Public Key Asymmetric Cryptography</title><author>Merkepci, Mehmet ; Abobala, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-be3055c82e7b605b01491ca28037f80aca8d936e1ed768ae6a2d955e998cfd2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Complex numbers</topic><topic>Cryptography</topic><topic>Mathematics</topic><topic>Multimedia</topic><topic>Number theory</topic><topic>Prime numbers</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merkepci, Mehmet</creatorcontrib><creatorcontrib>Abobala, Mohammad</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkepci, Mehmet</au><au>Abobala, Mohammad</au><au>Stanimirović, Predrag S.</au><au>Predrag S Stanimirović</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Some Novel Results about Split-Complex Numbers, the Diagonalization Problem, and Applications to Public Key Asymmetric Cryptography</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>In this paper, we present some of the foundational concepts of split-complex number theory such as split-complex divison, gcd, and congruencies. Also, we prove that Euler’s theorem is still true in the case of split-complex integers, and we use this theorem to present a split-complex version of the RSA algorithm which is harder to be broken than the classical version. On the other hand, we study some algebraic properties of split-complex matrices, where we present the formula of computing the exponent of a split-complex matrix eX with a novel algorithm to represent a split-complex matrix X by a split-complex diagonal matrix, which is known as the diagonalization problem. In addition, many examples were illustrated to clarify the validity of our work.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2023/4481016</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1372-1769</orcidid><orcidid>https://orcid.org/0000-0003-1536-1776</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-4629
ispartof Journal of mathematics (Hidawi), 2023, Vol.2023, p.1-12
issn 2314-4629
2314-4785
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c767bc0ed8b74250ae836197db05500f
source Wiley-Blackwell Open Access Collection; Publicly Available Content (ProQuest)
subjects Algebra
Algorithms
Complex numbers
Cryptography
Mathematics
Multimedia
Number theory
Prime numbers
Theorems
title On Some Novel Results about Split-Complex Numbers, the Diagonalization Problem, and Applications to Public Key Asymmetric Cryptography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Some%20Novel%20Results%20about%20Split-Complex%20Numbers,%20the%20Diagonalization%20Problem,%20and%20Applications%20to%20Public%20Key%20Asymmetric%20Cryptography&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Merkepci,%20Mehmet&rft.date=2023&rft.volume=2023&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2023/4481016&rft_dat=%3Cproquest_doaj_%3E2837975837%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-be3055c82e7b605b01491ca28037f80aca8d936e1ed768ae6a2d955e998cfd2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2837975837&rft_id=info:pmid/&rfr_iscdi=true