Loading…
On Some Novel Results about Split-Complex Numbers, the Diagonalization Problem, and Applications to Public Key Asymmetric Cryptography
In this paper, we present some of the foundational concepts of split-complex number theory such as split-complex divison, gcd, and congruencies. Also, we prove that Euler’s theorem is still true in the case of split-complex integers, and we use this theorem to present a split-complex version of the...
Saved in:
Published in: | Journal of mathematics (Hidawi) 2023, Vol.2023, p.1-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-be3055c82e7b605b01491ca28037f80aca8d936e1ed768ae6a2d955e998cfd2c3 |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | Journal of mathematics (Hidawi) |
container_volume | 2023 |
creator | Merkepci, Mehmet Abobala, Mohammad |
description | In this paper, we present some of the foundational concepts of split-complex number theory such as split-complex divison, gcd, and congruencies. Also, we prove that Euler’s theorem is still true in the case of split-complex integers, and we use this theorem to present a split-complex version of the RSA algorithm which is harder to be broken than the classical version. On the other hand, we study some algebraic properties of split-complex matrices, where we present the formula of computing the exponent of a split-complex matrix eX with a novel algorithm to represent a split-complex matrix X by a split-complex diagonal matrix, which is known as the diagonalization problem. In addition, many examples were illustrated to clarify the validity of our work. |
doi_str_mv | 10.1155/2023/4481016 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c767bc0ed8b74250ae836197db05500f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c767bc0ed8b74250ae836197db05500f</doaj_id><sourcerecordid>2837975837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-be3055c82e7b605b01491ca28037f80aca8d936e1ed768ae6a2d955e998cfd2c3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhqMKpFalN36AJY5sqD_i2DmuFmgrqraicLb8MdnNKomD7VDSH8Dvxu0WjlzGM_Yz71jzFsVbgj8Qwvk5xZSdV5UkmNRHxQllpCorIfmrv3lNm-PiLMY9xphQyWSDT4rftyO69wOgG_8TevQV4tyniLTxc0L3U9-lcuOHqYdf6GYeDIS4QmkH6GOnt37UffeoU-dHdBe86WFYIT06tJ5yo31-iCh5dDebXKMvsKB1XIYBUsjlJixT8tugp93ypnjd6j7C2ct5Wnz__Onb5rK8vr242qyvS8tqnEoDDHNuJQVhaswNJlVDrKYSM9FKrK2WrmE1EHCilhpqTV3DOTSNtK2jlp0WVwdd5_VeTaEbdFiU1516vvBhq3RIne1BWVELYzE4aURFOdYgWU0a4Uz-AsZt1np30JqC_zFDTGrv55B3ElXermgEzzFTqwNlg48xQPtvKsHqyTj1ZJx6MS7j7w_4rhudfuj-T_8BeLmYHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837975837</pqid></control><display><type>article</type><title>On Some Novel Results about Split-Complex Numbers, the Diagonalization Problem, and Applications to Public Key Asymmetric Cryptography</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content (ProQuest)</source><creator>Merkepci, Mehmet ; Abobala, Mohammad</creator><contributor>Stanimirović, Predrag S. ; Predrag S Stanimirović</contributor><creatorcontrib>Merkepci, Mehmet ; Abobala, Mohammad ; Stanimirović, Predrag S. ; Predrag S Stanimirović</creatorcontrib><description>In this paper, we present some of the foundational concepts of split-complex number theory such as split-complex divison, gcd, and congruencies. Also, we prove that Euler’s theorem is still true in the case of split-complex integers, and we use this theorem to present a split-complex version of the RSA algorithm which is harder to be broken than the classical version. On the other hand, we study some algebraic properties of split-complex matrices, where we present the formula of computing the exponent of a split-complex matrix eX with a novel algorithm to represent a split-complex matrix X by a split-complex diagonal matrix, which is known as the diagonalization problem. In addition, many examples were illustrated to clarify the validity of our work.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2023/4481016</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Algebra ; Algorithms ; Complex numbers ; Cryptography ; Mathematics ; Multimedia ; Number theory ; Prime numbers ; Theorems</subject><ispartof>Journal of mathematics (Hidawi), 2023, Vol.2023, p.1-12</ispartof><rights>Copyright © 2023 Mehmet Merkepci and Mohammad Abobala.</rights><rights>Copyright © 2023 Mehmet Merkepci and Mohammad Abobala. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-be3055c82e7b605b01491ca28037f80aca8d936e1ed768ae6a2d955e998cfd2c3</cites><orcidid>0000-0002-1372-1769 ; 0000-0003-1536-1776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2837975837/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2837975837?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,25734,27904,27905,27906,36993,44571,74875</link.rule.ids></links><search><contributor>Stanimirović, Predrag S.</contributor><contributor>Predrag S Stanimirović</contributor><creatorcontrib>Merkepci, Mehmet</creatorcontrib><creatorcontrib>Abobala, Mohammad</creatorcontrib><title>On Some Novel Results about Split-Complex Numbers, the Diagonalization Problem, and Applications to Public Key Asymmetric Cryptography</title><title>Journal of mathematics (Hidawi)</title><description>In this paper, we present some of the foundational concepts of split-complex number theory such as split-complex divison, gcd, and congruencies. Also, we prove that Euler’s theorem is still true in the case of split-complex integers, and we use this theorem to present a split-complex version of the RSA algorithm which is harder to be broken than the classical version. On the other hand, we study some algebraic properties of split-complex matrices, where we present the formula of computing the exponent of a split-complex matrix eX with a novel algorithm to represent a split-complex matrix X by a split-complex diagonal matrix, which is known as the diagonalization problem. In addition, many examples were illustrated to clarify the validity of our work.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Complex numbers</subject><subject>Cryptography</subject><subject>Mathematics</subject><subject>Multimedia</subject><subject>Number theory</subject><subject>Prime numbers</subject><subject>Theorems</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhqMKpFalN36AJY5sqD_i2DmuFmgrqraicLb8MdnNKomD7VDSH8Dvxu0WjlzGM_Yz71jzFsVbgj8Qwvk5xZSdV5UkmNRHxQllpCorIfmrv3lNm-PiLMY9xphQyWSDT4rftyO69wOgG_8TevQV4tyniLTxc0L3U9-lcuOHqYdf6GYeDIS4QmkH6GOnt37UffeoU-dHdBe86WFYIT06tJ5yo31-iCh5dDebXKMvsKB1XIYBUsjlJixT8tugp93ypnjd6j7C2ct5Wnz__Onb5rK8vr242qyvS8tqnEoDDHNuJQVhaswNJlVDrKYSM9FKrK2WrmE1EHCilhpqTV3DOTSNtK2jlp0WVwdd5_VeTaEbdFiU1516vvBhq3RIne1BWVELYzE4aURFOdYgWU0a4Uz-AsZt1np30JqC_zFDTGrv55B3ElXermgEzzFTqwNlg48xQPtvKsHqyTj1ZJx6MS7j7w_4rhudfuj-T_8BeLmYHw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Merkepci, Mehmet</creator><creator>Abobala, Mohammad</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1372-1769</orcidid><orcidid>https://orcid.org/0000-0003-1536-1776</orcidid></search><sort><creationdate>2023</creationdate><title>On Some Novel Results about Split-Complex Numbers, the Diagonalization Problem, and Applications to Public Key Asymmetric Cryptography</title><author>Merkepci, Mehmet ; Abobala, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-be3055c82e7b605b01491ca28037f80aca8d936e1ed768ae6a2d955e998cfd2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Complex numbers</topic><topic>Cryptography</topic><topic>Mathematics</topic><topic>Multimedia</topic><topic>Number theory</topic><topic>Prime numbers</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merkepci, Mehmet</creatorcontrib><creatorcontrib>Abobala, Mohammad</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkepci, Mehmet</au><au>Abobala, Mohammad</au><au>Stanimirović, Predrag S.</au><au>Predrag S Stanimirović</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Some Novel Results about Split-Complex Numbers, the Diagonalization Problem, and Applications to Public Key Asymmetric Cryptography</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>In this paper, we present some of the foundational concepts of split-complex number theory such as split-complex divison, gcd, and congruencies. Also, we prove that Euler’s theorem is still true in the case of split-complex integers, and we use this theorem to present a split-complex version of the RSA algorithm which is harder to be broken than the classical version. On the other hand, we study some algebraic properties of split-complex matrices, where we present the formula of computing the exponent of a split-complex matrix eX with a novel algorithm to represent a split-complex matrix X by a split-complex diagonal matrix, which is known as the diagonalization problem. In addition, many examples were illustrated to clarify the validity of our work.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2023/4481016</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1372-1769</orcidid><orcidid>https://orcid.org/0000-0003-1536-1776</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-4629 |
ispartof | Journal of mathematics (Hidawi), 2023, Vol.2023, p.1-12 |
issn | 2314-4629 2314-4785 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c767bc0ed8b74250ae836197db05500f |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content (ProQuest) |
subjects | Algebra Algorithms Complex numbers Cryptography Mathematics Multimedia Number theory Prime numbers Theorems |
title | On Some Novel Results about Split-Complex Numbers, the Diagonalization Problem, and Applications to Public Key Asymmetric Cryptography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Some%20Novel%20Results%20about%20Split-Complex%20Numbers,%20the%20Diagonalization%20Problem,%20and%20Applications%20to%20Public%20Key%20Asymmetric%20Cryptography&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Merkepci,%20Mehmet&rft.date=2023&rft.volume=2023&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2023/4481016&rft_dat=%3Cproquest_doaj_%3E2837975837%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-be3055c82e7b605b01491ca28037f80aca8d936e1ed768ae6a2d955e998cfd2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2837975837&rft_id=info:pmid/&rfr_iscdi=true |