Loading…

Glycerol monolaurate regulates apoptosis and inflammation by suppressing lipopolysaccharide-induced ROS production and NF-κB activation in avian macrophages

Macrophages play a crucial role in both innate and adaptive immunity. However, their abnormal activation can lead to undesirable inflammatory reactions. This study aimed to investigate the effects of glycerol monolaurate (GML), a natural monoester known for its anti-inflammatory and immunoregulatory...

Full description

Saved in:
Bibliographic Details
Published in:Poultry science 2024-08, Vol.103 (8), p.103870, Article 103870
Main Authors: Kong, Linglian, Sun, Peng, Pan, Xue, Xiao, Chuanpi, Song, Bochen, Song, Zhigang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Macrophages play a crucial role in both innate and adaptive immunity. However, their abnormal activation can lead to undesirable inflammatory reactions. This study aimed to investigate the effects of glycerol monolaurate (GML), a natural monoester known for its anti-inflammatory and immunoregulatory properties, on avian macrophages using the HD11 cell line. The results indicated that a concentration of 10 μg/mL of GML enhanced the phagocytic activity of HD11 cells (P < 0.05) without affecting cell viability (P > 0.05). GML decreased the expression of M1 macrophage polarization markers, such as CD86 and TNF-α genes (P < 0.05), while increasing the expression of M2 macrophage polarization markers, such as TGF-β1 and IL-10 genes (P < 0.05). GML suppressed ROS production, apoptosis, and the expression of proinflammatory genes (IL-1β and IL-6) induced by LPS (P < 0.05). GML also promoted the expression of TGF-β1 and IL-10 (P < 0.05), both in the presence and absence of LPS exposure. Moreover, GML suppressed the gene expression of TLR4 and NF-κB p65 induced by LPS (P < 0.05), as well as the phosphorylation of NF-κB p65 (P < 0.05). In conclusion, GML exhibited regulatory effects on the polarized state of avian macrophages and demonstrated significant anti-apoptotic and anti-inflammatory properties by suppressing intracellular ROS and the NF-κB signaling pathway.
ISSN:0032-5791
1525-3171
1525-3171
DOI:10.1016/j.psj.2024.103870